首页> 外文学位 >Analyzing Count Data with Endogenous Peering Effects: How Spatial Activities and Our Connections Mutually Influence Each Other?
【24h】

Analyzing Count Data with Endogenous Peering Effects: How Spatial Activities and Our Connections Mutually Influence Each Other?

机译:分析具有内在凝视效应的计数数据:空间活动和我们的联系如何相互影响?

获取原文
获取原文并翻译 | 示例

摘要

The rapid development of social media networks and information technology innovations has brought revolutions in regional development and transportation systems. For example, in the hospitality business, short-term rental of residential houses/apartments is challenging the traditional hotel business, and ridesharing is changing people's travel behavior in both short-terms (e.g., departure time and route choice) and long term (e.g., car ownership). People no longer make decisions individually, instead, they connect with each other more closely both geographically and virtually (i.e., via social media online). Most traditional spatial econometric models address the interdependencies among decision makers using an exogenous weight matrix, which is usually specified by geographic distances or socioeconomic distances. However, such specification becomes limited and inappropriate when the peer effect is formed by virtual connections online, and thus the weight matrix becomes endogenous. Therefore, this dissertation develops an innovative spatial count data model with endogenous peer effects, which will enrich the traditional spatial research by considering the influence of "virtual space", i.e., how the spatial activities are enforced or influenced by the peer effects generated by socioeconomic interactions. Specifically, the proposed model consists of three parts: the first part is a Poisson spatial autoregressive regression model for count data (i.e., small positive integers); the second part characterizes virtual connections among observations by introducing an entry equation, which enters the definition of the weight matrix; and the last part takes into account the endogenous peer effect by allowing the first two parts to be correlated with each other. For model estimations, the Bayesian Blocked Metropolis-Hasting within Gibbs Sampling algorithm is used, and the model is validated using Monte Carlo simulations. To do so, a series of simulated datasets are generated to evaluate the robustness of the model, and all validation results show satisfactory parameter recovery capability. In the end, the proposed model is used to analyze popular sharing economy activities in the hospitality business. Two empirical applications, focusing on the number of Airbnb establishments in each census block group and the number of reviews received by the each Airbnb listing in the Manhattan area, are analyzed using the proposed model. Based on the model estimates, the potentially influential factors of Airbnb establishments are identified, and the applicable value of the proposed model is demonstrated.
机译:社交媒体网络的迅速发展和信息技术的创新带来了区域发展和交通运输系统的革命。例如,在酒店业中,住宅/公寓的短期租赁正在挑战传统的酒店业,而拼车改变了人们在短期(例如出发时间和路线选择)和长期(例如,拥有汽车)。人们不再单独做出决策,而是在地理位置和虚拟方面(即通过在线社交媒体)更加紧密地联系在一起。大多数传统的空间计量经济学模型使用外部权重矩阵来解决决策者之间的相互依赖性,该权重矩阵通常由地理距离或社会经济距离来指定。然而,当通过在线虚拟连接形成对等效应时,这种规格变得有限且不合适,因此权重矩阵成为内生的。因此,本文建立了具有内生同伴效应的创新空间计数数据模型,通过考虑“虚拟空间”的影响,即社会经济产生的同伴效应如何加强或影响空间活动,丰富了传统的空间研究。互动。具体而言,所提出的模型包括三个部分:第一部分是用于计数数据(即小的正整数)的Poisson空间自回归回归模型;第二部分通过引入一个输入方程来描述观测之间的虚拟联系,该方程输入权重矩阵的定义。最后一部分则通过允许前两个部分相互关联来考虑内生同伴效应。对于模型估计,使用Gibbs采样算法中的贝叶斯阻塞都会区-停止,并使用蒙特卡洛模拟对模型进行验证。为此,将生成一系列模拟数据集以评估模型的鲁棒性,并且所有验证结果均显示令人满意的参数恢复能力。最后,将所提出的模型用于分析酒店业务中的共享经济活动。使用建议的模型分析了两个经验应用,分别针对每个人口普查区组中的Airbnb场所数量以及曼哈顿区的每个Airbnb列表接收的评论数量。基于模型估计,确定了Airbnb场所的潜在影响因素,并论证了该模型的适用价值。

著录项

  • 作者

    Zou, Wei.;

  • 作者单位

    Rensselaer Polytechnic Institute.;

  • 授予单位 Rensselaer Polytechnic Institute.;
  • 学科 Engineering.;Statistics.;Civil engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 170 p.
  • 总页数 170
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号