首页> 外文学位 >Coordinated Driving in Connected and Autonomous Vehicle System: Optimal Advance Lane Change Zones and Coordinated Platoon Car Following Control.
【24h】

Coordinated Driving in Connected and Autonomous Vehicle System: Optimal Advance Lane Change Zones and Coordinated Platoon Car Following Control.

机译:互联无人车系统中的协调驾驶:最佳提前车道变更区和协调的小排车跟随控制。

获取原文
获取原文并翻译 | 示例

摘要

The connected and autonomous vehicle (CAV) system enables countless innovative coordinated driving approaches, such as coordinated lane change and car-following in microscopic CAV control, and coordinated rounding and parking in macroscopic traffic flow guidance, which will improve the performance of our transportation system by enhancing traffic mobility, providing safe driving environment and reducing fuel consumption. Since the lane change and car-following behavior are indicated as crucial factors of traffic safety and efficiency, this dissertation focuses on developing the coordinated driving schemes in microscopic control and operation of lane change and car-following maneuvers. In particular, I develop an lane change zone optimization strategy and the coordinated platoon car-following control for a pure CAV platoon and a mixed platoon (i.e. mixed with human-drive vehicles and CAVs) respectively.;This dissertation first explore the management strategy of the mandatory lane change near a two-lane highway off-ramp by optimizing the location of advance warning. The proposed approach considers that the area downstream of the advance warning includes two zones: the green and yellow zones corresponding to their respective most like lane change maneuvers. An optimization model is proposed to search for the optimal green and yellow zones. Traffic flow theory such as Greenshield model and shock wave analysis are used to analyze the impacts of the S-MLC and D-MLC maneuvers on the traffic delay. Numerical experiments indicate that the proposed optimization model can identify the optimal location to set the advance MLC warning nearby an off-ramp so that the traffic delay resulting from lane change maneuvers is minimized, and the corresponding capacity drop and traffic oscillation can be efficiently mitigated.;Then, this research develops a novel car-following control scheme for a platoon of connected and autonomous vehicles on a straight highway. The platoon is modeled as an interconnected multi-agent dynamical system subject to physical and safety constraints. A constrained optimization based control scheme is proposed to ensure an entire platoon's transient traffic smoothness and asymptotic dynamic performance. This dissertation develops dual based distributed algorithms to compute optimal solutions with proven convergence. Furthermore, the asymptotic stability of the unconstrained linear closed-loop system is established. These stability analysis results provide a principle to select penalty weights in the underlying optimization problem to achieve the desired closed-loop performance for both the transient and the asymptotic dynamics.;By the motivation that CAVs and human-drive vehicles will co-exist on the road for a long period in the near future, the third part of this dissertation extends the pure CAV coordinated platooning control to the mixed flow environment. By integrating the Newell car-following model, a real-time curve matching algorithm is implemented to calibrate the ca-following model and anticipate the movement of human-drive vehicle by the real-time trajectory data. The constrained MPC are developed for each CAV platoon, considering their movement interaction through the human-drive vehicle platoon. Furthermore, this study provide a modified dual based distributed algorithm to improve convergence speed of the primal problem for the dual based distributed algorithm in Chapter 4. Several requirements of the penalty weights selection are provided by stability analysis under the unconstrained conditions. The numerical experiments based on field data will be conducted to illustrate the effectiveness and efficiency of the proposed the solution approach and the platoon control schemes.
机译:互联无人驾驶(CAV)系统可实现无数创新的协调驾驶方法,例如微观CAV控制中的协调车道变更和跟车,以及宏观交通流引导中的协调取整和停车,这将改善我们运输系统的性能通过提高交通机动性,提供安全的驾驶环境并减少油耗。由于变道和跟车行为是交通安全和效率的关键因素,因此本文着眼于在变道和跟车动作的微观控制和操作中发展协调驾驶方案。特别是针对纯CAV排和混合排(即混合动力车和CAV)分别开发了换道区优化策略和排车协调控制。通过优化提前警告的位置,在两车道高速公路匝道附近强制性改变车道。所提出的方法认为,提前警告的下游区域包括两个区域:绿色和黄色区域,分别对应于它们各自最相似的车道变更操作。提出了一种优化模型,以寻找最佳的绿色和黄色区域。利用Greenshield模型和冲击波分析等交通流理论,分析了S-MLC和D-MLC操作对交通延误的影响。数值实验表明,所提出的优化模型可以识别出最佳的位置,以便在匝道附近设置提前MLC警告,从而使变道操作引起的交通延误最小,并且可以有效缓解相应的容量下降和交通波动。 ;然后,本研究针对直线公路上的一组联网自动驾驶汽车开发了一种新型的跟车控制方案。该排建模为受物理和安全约束的互连多主体动力学系统。提出了一种基于约束优化的控制方案,以确保整个排的瞬时交通平稳性和渐近动态性能。本文开发了基于对偶的分布式算法,以计算具有收敛性的最优解。此外,建立了无约束线性闭环系统的渐近稳定性。这些稳定性分析结果提供了一个原理,可以选择基本优化问题中的惩罚权重,以针对瞬态和渐进动力学实现理想的闭环性能;通过CAV和人类驾驶车辆将共存于发动机上的动机在不久的将来很长一段路途中,本文的第三部分将纯CAV协调排控制扩展到混合流环境。通过集成Newell汽车跟随模型,实现了实时曲线匹配算法,以校准ca跟随模型,并通过实时轨迹数据预测人类驾驶车辆的运动。针对每个CAV排开发了受约束的MPC,考虑了它们在人机车辆排中的运动交互作用。此外,本研究为第4章中基于对偶的分布式算法提供了改进的基于对偶的分布式算法,以提高原始问题的收敛速度。通过在无约束条件下的稳定性分析,对惩罚权重选择提出了一些要求。将基于现场数据进行数值实验,以说明所提出的求解方法和排控制方案的有效性和效率。

著录项

  • 作者

    Gong, Siyuan.;

  • 作者单位

    Illinois Institute of Technology.;

  • 授予单位 Illinois Institute of Technology.;
  • 学科 Civil engineering.;Transportation.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 254 p.
  • 总页数 254
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:54:23

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号