首页> 外文学位 >Head-disk Interface Study for Heat Assisted Magnetic Recording (HAMR) and Plasmonic Nanolithography for Patterned Media.
【24h】

Head-disk Interface Study for Heat Assisted Magnetic Recording (HAMR) and Plasmonic Nanolithography for Patterned Media.

机译:用于辅助介质的热辅助磁记录(HAMR)和等离子纳米光刻的磁头-磁盘界面研究。

获取原文
获取原文并翻译 | 示例

摘要

The magnetic storage areal density keeps increasing every year, and magnetic recording-based hard disk drives provide a very cheap and effective solution to the ever increasing demand for data storage. Heat assisted magnetic recording (HAMR) and bit patterned media have been proposed to increase the magnetic storage density beyond 1 Tb/in2.;In HAMR systems, high magnetic anisotropy materials are recommended to break the superparamagnetic limit for further scaling down the size of magnetic bits. However, the current magnetic transducers are not able to generate strong enough field to switch the magnetic orientations of the high magnetic anisotropy material so the data writing is not able to be achieved. So thermal heating has to be applied to reduce the coercivity for the magnetic writing. To provide the heating, a laser is focused using a near field transducer (NFT) to locally heat a ~(25 nm)2 spot on the magnetic disk to the Curie temperature, which is ~ 400 C-600°C, to assist in the data writing process. But this high temperature working condition is a great challenge for the traditional head-disk interface (HDI). The disk lubricant can be depleted by evaporation or decomposition. The protective carbon overcoat can be graphitized or oxidized. The surface quality, such as its roughness, can be changed as well. The NFT structure is also vulnerable to degradation under the large number of thermal load cycles. The changes of the HDI under the thermal conditions could significantly reduce the robustness and reliability of the HAMR products.;In bit patterned media systems, instead of using the continuous magnetic granular material, physically isolated magnetic islands are used to store data. The size of the magnetic islands should be about or less than 25 nm in order to achieve the storage areal density beyond 1 Tb/in2. However, the manufacture of the patterned media disks is a great challenge for the current optical lithography technology. Alternative lithography solutions, such as nanoimprint, plasmonic nanolithography, could be potential candidates for the fabrication of patterned disks.;This dissertation focuses mainly on: (1) an experimental study of the HDI under HAMR conditions (2) exploration of a plasmonic nanolithography technology.;In this work, an experimental HAMR testbed (named "Cal stage") is developed to study different aspects of HAMR systems, including the tribological head-disk interface and heat transfer in the head-disk gap. A temperature calibration method based on magnetization decay is proposed to obtain the relationship between the laser power input and temperature increase on the disk. Furthermore, lubricant depletion tests under various laser heating conditions are performed. The effects of laser heating repetitions, laser power and disk speeds on lubricant depletion are discussed. Lubricant depletion under the optical focused laser beam heating and the NFT heating are compared, revealing that thermal gradient plays an important role for lubricant depletion. Lubricant reflow behavior under various conditions is also studied, and a power law dependency of lubricant depletion on laser heating repetitions is obtained from the experimental results. A conductive-AFM system is developed to measure the electrical properties of thin carbon films. The conductivity or resistivity is a good parameter for characterizing the sp2/sp3 components of the carbon films. Different heating modes are applied to study the degradation of the carbon films, including temperature-controlled electric heater heating, focused laser beam heating and NFT heating. It is revealed that the temperature and heating duration significantly affect the degradation of the carbon films. Surface reflectivity and roughness are changed under certain heating conditions. The failure of the NFT structure during slider flying is investigated using our in-house fabricated sliders. In order to extend the lifetime of the NFT, a two-stage heating scheme is proposed and a numerical simulation has verified the feasibility of this new scheme. The heat dissipated around the NFT structure causes a thermal protrusion. There is a chance for contact to occur between the protrusion and disk which can result in a failure of the NFT. A design method to combine both TFC protrusion and laser induced NFT protrusion is proposed to reduce the fly-height modulation and chance of head-disk contact.;Finally, an integrated plasmonic nanolithography machine is introduced to fabricate the master template for patterned disks. The plasmonic nanolithography machine uses a flying slider with a plasmonic lens to expose the thermal resist on a spinning wafer. The system design, optimization and integration have been performed over the past few years. Several sub-systems of the plasmonic nanolithography machine, such as the radial and circumferential direction position control, high speed pattern generation, are presented in this work. The lithography results are shown as well.
机译:磁存储的面密度每年都在增长,基于磁记录的硬盘驱动器为日益增长的数据存储需求提供了一种非常便宜且有效的解决方案。有人建议采用热辅助磁记录(HAMR)和位图样介质来将磁存储密度提高到1 Tb / in2以上。在HAMR系统中,建议使用高磁各向异性材料打破超顺磁极限,以进一步缩小磁尺寸位。然而,当前的磁换能器不能产生足够强的场来切换高磁各向异性材料的磁取向,因此不能实现数据写入。因此,必须施加热加热以降低磁性写入的矫顽力。为了提供加热,使用近场换能器(NFT)聚焦激光,以将磁盘上的〜(25 nm)2点局部加热到居里温度,居里温度约为400 C-600°C,以帮助加热。数据写入过程。但是,这种高温工作条件对传统的磁头磁盘接口(HDI)来说是一个巨大的挑战。圆盘润滑剂可通过蒸发或分解而耗尽。保护性碳外涂层可以被石墨化或氧化。表面质量(例如粗糙度)也可以更改。 NFT结构在大量热负荷循环下也容易退化。在热条件下,HDI的变化可能会大大降低HAMR产品的耐用性和可靠性。在位模式介质系统中,物理隔离的磁岛被用来存储数据,而不是使用连续的磁性粒状材料。磁岛的大小应约为或小于25 nm,以使存储面密度超过1 Tb / in2。然而,图案化介质盘的制造对于当前的光学光刻技术是巨大的挑战。替代的光刻解决方案,如纳米压印,等离激元纳米光刻技术,可能是制造图案化磁盘的潜在候选者。本论文主要着重于:(1)在HAMR条件下进行HDI的实验研究(2)探索等离激元纳米光刻技术在这项工作中,开发了一个实验性HAMR试验台(称为“校准阶段”)来研究HAMR系统的不同方面,包括摩擦学的磁头-磁盘界面和磁头-磁盘间隙中的热传递。提出了一种基于磁化强度衰减的温度标定方法,以求得激光功率输入与磁盘温度升高之间的关系。此外,在各种激光加热条件下进行润滑剂消耗测试。讨论了激光加热次数,激光功率和磁盘速度对润滑剂消耗的影响。比较了光学聚焦激光束加热和NFT加热下的润滑剂消耗,发现热梯度对润滑剂消耗起着重要作用。还研究了在各种条件下的润滑剂回流行为,并从实验结果获得了润滑剂耗竭对激光加热重复次数的幂律依赖性。开发了一种导电原子力显微镜系统以测量碳薄膜的电性能。电导率或电阻率是表征碳膜中sp2 / sp3成分的好参数。应用不同的加热模式来研究碳膜的降解,包括温度控制的电加热器加热,聚焦激光束加热和NFT加热。揭示了温度和加热持续时间显着影响碳膜的降解。在某些加热条件下,表面反射率和粗糙度会发生变化。使用我们内部制造的滑块研究NFT结构在滑块飞行过程中的破坏。为了延长NFT的寿命,提出了一种两阶段加热方案,并通过数值模拟验证了该新方案的可行性。 NFT结构周围散发的热量导致热突起。在突起和圆盘之间可能会发生接触,这可能导致NFT失效。提出了一种将TFC突起和激光诱导的NFT突起结合的设计方法,以减少飞行高度调制和磁头-磁盘接触的机会。最后,引入了集成的等离子纳米光刻机来制作图案化磁盘的主模板。等离子纳米光刻机使用带有等离子透镜的浮动滑块在旋转的晶片上曝光热阻。在过去的几年中已经进行了系统设计,优化和集成。等离子体纳米光刻机的几个子系统,例如径向和圆周方向的位置控制,高速图形生成,在这项工作中介绍。还显示了光刻结果。

著录项

  • 作者

    Xiong, Shaomin.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Mechanical engineering.;Optics.;Mechanics.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 184 p.
  • 总页数 184
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号