首页> 外文学位 >Green's function-stochastic approach to solving linear, nonlinear and nonhomogeneous evolution transportproblems.
【24h】

Green's function-stochastic approach to solving linear, nonlinear and nonhomogeneous evolution transportproblems.

机译:Green的函数随机方法用于求解线性,非线性和非均匀演化输运问题。

获取原文
获取原文并翻译 | 示例

摘要

A general, analytical Green's function-stochastic approach for solving linear, nonlinear and non-homogeneous evolution and transport problems is presented.;Analysis of practical and natural engineering situations reveal the basic elements from which an understanding of such systems is best put together. Partial differential equations that evolve from such analysis sometimes become difficult to solve by classical approaches. While numerical solutions are often sought in some studies, Green's function methods often offer a powerful alternative.;Green's function in the case of linear models, provide integral solutions that depend strictly on known boundary conditions, initial conditions, and when necessary, space and/or time varying system forcing functions. The approach of Green's function best reveals the responses to the problems effected by Dirac delta functions. Green's function methods are especially useful when the system is subject to random boundary and/or initial conditions, and/or random forcing. Under these conditions, Green's function based solution describes exactly the random response of the modeled system. In addition, the Green's -based solution allows explicit calculation of the space-and possibly time-dependent mean response, as well as the space and time-dependent system variance about the mean evolves in space and time is, in turn typically.;Problems of physics and engineering that reveal probabilistic characteristics or involve boundary conditions that are random in nature as well as possibly stochastic in-system forcing can be analysed by Green's function methods. For such problems, Green's function methods can be usefully combined with methods from theory of stochastic differential equations. Here, the time and space-dependent evolution of the variables describing the system response is often modeled as a random walk/stochastic process, the evolution of which is governed by advection-diffusion stochastic differential equation. The probabilstic decription of how the stochastic process, evolves in space and time is, in typically embedded in the transition probability density, p, which gives the (conditional) probability of observing the stochastic process/random system response, at some specified position and time, given its position at an earlier time. Importantly and as detailed and exploited in this dissertation, the equation governing the evolution of the transition density, p - the Chapmann-Kolmogorov equation - corresponds exactly, under fairly general conditions, to the Green's function describing the system's response. Thus, the important problem of modeling the random response of linear systems subject to random forcing can be powerfully tackled by initially determining the system's Green's function, and explicitly identifying the system variable describing system response as stochastic process /random walker. Using this recipe provides scientists and engineers with a near-complete, rigorous, physics-based, probabilistic picture of how the system evolves under random forcing and /or random boundary and initial conditions.;This dissertation first analysed the flow problem from continuum approach employing conservation principles of mass and momentum. Such analysis led to a pure diffusion problem. The diffusion problem is then solved for a semi-infinite and finite medium with moving boundary. The Green's function method is then employed to solve the diffusion equation but this time with time - dependent boundary motions. Some useful Green's function results were obtained. The Chapmann-Kolmogorov equation is then derived and simplified to the Fokker- Planck equation for application to randomly-forced incompressible flow problems. Finally, two simple example flow problems, the random response of a semi-infinite fluid layer, and the random response of a finite layer, both driven by the random boundary motion are considered.
机译:提出了一种通用的,分析格林函数随机的方法来解决线性,非线性和非均匀的演化和运输问题。;对实际和自然工程情况的分析揭示了最基本的要素,从这些要素可以最好地理解这种系统。由这种分析产生的偏微分方程有时很难用经典方法求解。尽管在某些研究中通常寻求数值解,但格林函数方法通常提供了一种强大的替代方法;在线性模型的情况下,格林函数提供了严格取决于已知边界条件,初始条件以及必要时的空间和/或时变系统强制功能。 Green函数的方法最好地揭示了对Dirac delta函数影响的问题的响应。当系统受到随机边界和/或初始条件和/或随机强迫的影响时,格林函数方法特别有用。在这些条件下,格林基于函数的解决方案准确地描述了建模系统的随机响应。另外,基于格林的解决方案允许显式计算时空相关的均值响应,以及可能随时间变化的均值响应,以及通常情况下关于时空均值演变的时空相关系统方差。可以通过格林函数方法分析揭示概率特征或涉及本质上随机的边界条件以及可能是随机的系统内强迫的物理学和工程学博士学位。对于此类问题,格林函数方法可以与随机微分方程理论中的方法有效地结合使用。在此,描述系统响应的变量随时间和空间的演化通常被建模为随机游走/随机过程,其演化由对流扩散随机微分方程控制。随机过程如何在空间和时间上演化的概率描述通常嵌入在转移概率密度p中,该概率密度p提供了在某些指定的位置和时间观察随机过程/随机系统响应的(条件)概率。 ,因为它的位置较早。重要的是,正如本文所详述和利用的那样,控制过渡密度演变的方程式-Chapmann-Kolmogorov方程式-在相当普遍的条件下,确切地对应于描述系统响应的格林函数。因此,可以通过首先确定系统的格林函数,并明确地将描述系统响应的系统变量识别为随机过程/随机沃克,来有效地解决对受随机强迫作用的线性系统的随机响应进行建模的重要问题。使用该配方可以为科学家和工程师提供关于系统在随机强迫和/或随机边界和初始条件下如何演化的近乎完整,严格,基于物理的概率图。质量和动量守恒的原则。这种分析导致了纯粹的扩散问题。然后解决具有移动边界的半无限和有限介质的扩散问题。然后采用格林函数方法来求解扩散方程,但是这次是与时间有关的边界运动。获得了一些有用的格林函数结果。然后推导Chapmann-Kolmogorov方程并将其简化为Fokker-Planck方程,以应用于随机受迫的不可压缩流动问题。最后,考虑了两个简单的示例流动问题,即半无限流体层的随机响应和有限层的随机响应,这两个问题都是由随机边界运动驱动的。

著录项

  • 作者

    Nortey, Thomas Dowuona.;

  • 作者单位

    The University of North Carolina at Charlotte.;

  • 授予单位 The University of North Carolina at Charlotte.;
  • 学科 Mechanical engineering.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 110 p.
  • 总页数 110
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号