首页> 外文学位 >Fabrication and characterization of novel electrodes for solid oxide fuel cell for efficient energy conversion.
【24h】

Fabrication and characterization of novel electrodes for solid oxide fuel cell for efficient energy conversion.

机译:固体氧化物燃料电池新型电极的制备和表征,可实现有效的能量转换。

获取原文
获取原文并翻译 | 示例

摘要

Solid oxide fuel cells (SOFCs) have been considered as one of the most promising technologies for future energy conversion since they can in principle be operated with fuels ranging from H2 to any hydrocarbon fuel. However, the system cost and coking (when using hydrocarbon as fuel) issues for the state-of-art electrode materials/designs often limit their further application. The objective of this proposal is aiming at overcoming these problems and accelerating SOFCs commercialization.;One approach to cost reduction is lowering the SOFC operating temperature to below 800 or even 600 °C, so that inexpensive materials can be used and the quick start-up and SOFC durability can be improved. However, the overall electrochemical performance of an SOFC system will significantly decrease with a reduced operating temperature due to increased ohmic resistance of electrolyte and polarization resistances of the electrode reactions. Ohmic resistance could be reduced by decreasing thickness of electrolyte or using high ion-conducting electrolyte. Polarization resistance could be reduced by applying novel structured electrodes. Here we have fabricated a novel hierarchically oriented porous anode-supported solid oxide fuel cell with thin Gd0.1 Ce0.9O2 (GDC) electrolyte by freeze-drying tape-casting and drop-coating. 3 dimensional (3D) X-ray microscopy and subsequent analysis have demonstrated that the substrate has a graded open and straight pore/channel structure. The diameter of pore size on the bottom and top surface, porosity distribution along thickness direction and tortuosity factor have been determined by SEM and calculation with help of Matlab. The novel structure is expected to facilitate gas diffusion in the anode during fuel cell operation. The cell performance at low temperature ranging from 500-600 °C has been evaluated systematically. SOFCs with such Ni-GDC anode, GDC film (30 &mgr;m) electrolyte, and La0.6Sr0.4Co0.2Fe0.8O 3-GDC (LSCF-GDC) cathode show significantly enhanced cell power output of 1.021 W cm-2 at 600 °C using H2 as fuel and ambient air as oxidant.;Since cathode has been the center of the focus in the electrode development largely because oxygen reduction is more difficult to activate in SOFCs operating at commercially relevant temperature. Consequently, it is critically important to develop new cathode material or novel cathode microstructures with low polarization loss to maintain sufficient high electrochemical activity to enable SOFC operating at temperatures of below 600 °C. We have prepared SOFCs with hierarchically porous nano cathode network by a novel vacuum-free infiltration and subsequent freeze-drying combustion. The straight open GDC cathode skeleton and NiO-GDC anode substrate prepared by freeze-drying tape-casting facilitate mass transport while the nano cathode catalyst promotes the electrochemical reactions. The cell with straight open electrodes and hierarchically porous cathode network demonstrates a maximum power density of 0.65 Wcm-2 at 500 °C and impressive stability for more than 500 h at 400 °C using H2 as fuel and ambient air as oxidant. The simple and cost-effective fabrication process is expected to significantly impact the SOFC operability and accelerate its commercialization.;Another advantage of SOFCs compared with other energy conversion systems is the capability of direct utilization of hydrocarbon fuel. However, carbon species adsorb strongly on Ni surface and thus blocks the active site for electrochemical reactions, resulting in rapid performance degradation. In this research, we present an innovative and simple design for enhancing the coking resistance of the conventional nickel cermet SOFC anode. A thin nanoscale samaria doped ceria (SDC) catalyst layer has been deposited on the wall surface of the Ni-yttria-stabilized zirconia (Ni-YSZ) anode internal gas diffusion channel (5-200 &mgr;m in size) via a combination of freeze-drying tape-casting and vacuum-free infiltration. The efficiency for catalyst infiltration has been significantly improved by using hierarchically porous anode structure with open and straight channels. Single cells with nanoscale SDC layer show very stable cell performance and a peak power density of 0.65 Wcm-2 at 800 °C using methane as fuel, more than one order of magnitude higher than that for the cells using Ni-YSZ anode without the SDC catalyst layer. High resolution transmission electron microscopy (HRTEM) analysis indicates that nanoscale SDC layer can prevent the formation or growth of nickel carbide (onset of coking).
机译:固体氧化物燃料电池(SOFC)被认为是未来能源转换的最有希望的技术之一,因为它们原则上可以使用从H2到任何碳氢化合物燃料的燃料进行操作。然而,现有技术的电极材料/设计的系统成本和焦化(当使用碳氢化合物作为燃料时)问题常常限制了它们的进一步应用。该提案的目标是克服这些问题并加速SOFC的商业化。降低成本的一种方法是将SOFC的工作温度降低到800甚至600°C以下,以便可以使用廉价的材料并快速启动。并且可以提高SOFC的耐久性。然而,由于电解质的欧姆电阻增加和电极反应的极化电阻增加,SOFC系统的整体电化学性能将随着降低的工作温度而显着降低。欧姆电阻可以通过减小电解质的厚度或使用高离子传导性电解质来降低。通过应用新型结构化电极可以降低极化电阻。在这里,我们通过冷冻干燥带铸和滴涂法制备了具有薄的Gd0.1 Ce0.9O2(GDC)电解质的新型分层定向多孔阳极支撑的固体氧化物燃料电池。 3维(3D)X射线显微镜检查和后续分析表明,基材具有渐变的开放式和直孔/通道结构。通过SEM和Matlab的帮助,确定了底表面和顶表面的孔径直径,沿厚度方向的孔隙率分布以及曲折系数。期望这种新颖的结构有助于燃料电池运行期间气体在阳极中的扩散。系统评估了在500-600°C的低温下的电池性能。具有此类Ni-GDC阳极,GDC膜(30μm)电解质和La0.6Sr0.4Co0.2Fe0.8O 3-GDC(LSCF-GDC)阴极的SOFC显示出在1.021 W cm-2的显着增强的电池功率输出使用氢气作为燃料和周围空气作为氧化剂,温度为600°C;自从阴极成为电极开发的重点以来,很大程度上是因为在商业相关温度下运行的SOFC中,氧还原更难于激活。因此,开发具有低极化损耗的新型阴极材料或新型阴极微结构,以维持足够高的电化学活性以使SOFC在低于600°C的温度下运行至关重要。我们已经通过新型的无真空渗透和随后的冻干燃烧制备了具有分级多孔纳米阴极网络的SOFC。通过冷冻干燥的流延铸造法制备的直开式GDC阴极骨架和NiO-GDC阳极基底促进了质量传输,而纳米阴极催化剂促进了电化学反应。具有直开电极和分层多孔阴极网络的电池在500°C的条件下使用H2作为燃料,在环境空气中作为氧化剂,在500°C时的最大功率密度为0.65 Wcm-2,并在400°C的条件下具有超过500小时的出色稳定性。预计简单且具有成本效益的制造过程将极大地影响SOFC的可操作性并加速其商业化。相较于其他能量转换系统,SOFC的另一个优势是能够直接利用烃类燃料。然而,碳物质强烈地吸附在Ni表面上,因此阻碍了电化学反应的活性部位,导致性能快速下降。在这项研究中,我们提出了一种创新且简单的设计,用于增强常规镍金属陶瓷SOFC阳极的耐焦化性。通过以下方法的组合,在Ni-Ytria稳定的氧化锆(Ni-YSZ)阳极内部气体扩散通道(尺寸为5-200μm)的壁表面上沉积了一层薄薄的纳米级掺杂的纳米氧化铈(SDC)催化剂层。冻干带铸和无真空渗透。通过使用具有开放和直通道的分级多孔阳极结构,催化剂的渗透效率得到了显着提高。具有纳米级SDC层的单体电池表现出非常稳定的电池性能,使用甲烷作为燃料在800°C时的峰值功率密度为0.65 Wcm-2,比使用不含SDC的Ni-YSZ阳极的电池高出一个数量级。催化剂层。高分辨率透射电子显微镜(HRTEM)分析表明,纳米级SDC层可以防止碳化镍的形成或生长(焦化的开始)。

著录项

  • 作者

    Chen, Yu.;

  • 作者单位

    University of South Carolina.;

  • 授予单位 University of South Carolina.;
  • 学科 Materials science.;Chemical engineering.;Physical chemistry.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 123 p.
  • 总页数 123
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号