首页> 外文学位 >Reducing optical losses in organic photovoltaic devices using microlens arrays: Theoretical and experimental investigation.
【24h】

Reducing optical losses in organic photovoltaic devices using microlens arrays: Theoretical and experimental investigation.

机译:使用微透镜阵列减少有机光伏设备中的光损耗:理论和实验研究。

获取原文
获取原文并翻译 | 示例

摘要

Over the last decade, organic photovoltaic (OPV) devices have attracted a lot of attention and highest power conversion efficiencies (PCE) are now close to 10%. However, the performance is still much lower than that in the inorganic photovoltaic devices, like the widely commercialized silicon solar cells. There are many losses that can be contributed to the low efficiencies of OPV devices. Among them, optical loss is a big part, which can account for ~40% of total losses. The incident solar spectrum still largely remains poorly absorbed. In the OPV device structure, the thicknesses (~ 100-200 nm, at times less) are not enough to efficiently absorb light, and thicknesses cannot be indiscriminately increased further because of low charge carrier mobilities in most organic materials. Hence, to boost efficiencies further, it is imperative to improve light absorption within existing OPV architectures. Here an optical structure - microlens array (MLA) - was employed to increase light absorption inside the active layer, and PCE of OPV devices increased even for optimized devices. Normal incident light rays are refracted at the MLA and travel longer optical paths inside the active layers. Three OPV systems - poly(3-hexylthiophene-2,5-diyl):(6,6)-phenyl C61 butyric acid methyl ester (P3HT:PCBM), poly[[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl]:(6,6)-phenyl C71 butyric acid methyl ester (PCDTBT:PC71BM), and poly((4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b&feet;]dithiophene-2,6-diyl)(3-fluoro-2-[(2-ethylhexyl)carbonyl] thieno[3,4-b]thiophenediyl)):(6,6)-phenyl C71-butyric acid methyl ester (PTB7:PC71BM) were investigated. In the P3HT:PCBM system, MLA increased the absorption, absolute external quantum efficiency , and the PCE of an optimized device by ~ 4.3%. In the PCDTBT:PC71BM system, MLA increased the absorption, absolute external quantum efficiency, and PCE by more than 10%. After optimizing the dimension of MLA, we observed up to 17% enhancement in the short circuit current of PCDTBT:PC71BM cells, and 10% enhancement in the short circuit current of PTB7:PC71BM cells. In addition, simulations incorporating optical parameters of all structural layers were performed and they support the enhancement of absorption in the active layer with the assistance of MLA. Theoretically and experimentally investigating several MLA dimensions, we found that photocurrent increases with the ratio of height to pitch size of MLA. Simulations reveal the enhancement mechanisms: MLA focuses light, and also increases the light path within the active-layer by diffraction. The results show that utilizing MLA is an effective strategy to further increase light absorption in OPV devices. Moreover, the MLA is on the substrate side opposite to the active layer and does not hinder the cell fabrication or electrical characteristics. It is also generally applicable to all types of solar cells due to its non-intrusive and external nature.
机译:在过去的十年中,有机光伏(OPV)器件引起了广泛关注,并且最高功率转换效率(PCE)现在已接近10%。但是,该性能仍然远远低于无机光伏器件中的性能,例如广泛商业化的硅太阳能电池。造成OPV器件效率低的原因有很多。其中,光损耗占很大一部分,约占总损耗的40%。入射太阳光谱在很大程度上仍然吸收不良。在OPV器件结构中,厚度(〜100-200 nm,有时更小)不足以有效吸收光,并且由于大多数有机材料中载流子迁移率低,因此不能进一步任意增加厚度。因此,为了进一步提高效率,必须提高现有OPV架构内的光吸收率。在这里,采用了一种光学结构-微透镜阵列(MLA)-以增加有源层内部的光吸收,并且即使对于优化的器件,OPV器件的PCE也有所增加。垂直入射光线在MLA处折射,并在有源层内部传播更长的光路。三种OPV系统-聚(3-己基噻吩-2,5-二基):( 6,6)-苯基C61丁酸甲酯(P3HT:PCBM),聚[[9-(1-辛基壬基)-9H-咔唑- 2,7-二基] -2,5-噻吩二基-2,1,3-苯并噻二唑-4,7-二基-2,5-噻吩二基] :( 6,6)-苯基C71丁酸甲酯(PCDTBT:PC71BM )和聚((4,8-双[(2-乙基己基)氧基]苯并[1,2-b:4,5-b&feet;]二噻吩-2,6-二基)(3-氟-2- [研究了((2-乙基己基)羰基]噻吩并[3,4-b]噻吩二基):( 6,6)-苯基C71-丁酸甲酯(PTB7:PC71BM)。在P3HT:PCBM系统中,MLA将优化器件的吸收,绝对外部量子效率和PCE提高了约4.3%。在PCDTBT:PC71BM系统中,MLA将吸收,绝对外部量子效率和PCE提高了10%以上。优化MLA的尺寸后,我们观察到PCDTBT:PC71BM电池的短路电流提高了17%,而PTB7:PC71BM电池的短路电流提高了10%。另外,进行了包含所有结构层的光学参数的模拟,它们借助MLA支持增强活性层中的吸收。从理论上和实验上研究了几种MLA尺寸,我们发现光电流随着MLA的高度与间距尺寸之比的增加而增加。仿真揭示了增强机制:MLA聚焦光,并通过衍射还增加了有源层内的光路。结果表明,利用MLA是进一步提高OPV器件光吸收的有效策略。而且,MLA在与有源层相对的衬底侧,并且不妨碍电池制造或电特性。由于其非侵入性和外部性质,它通常还适用于所有类型的太阳能电池。

著录项

  • 作者

    Chen, Yuqing.;

  • 作者单位

    Iowa State University.;

  • 授予单位 Iowa State University.;
  • 学科 Electrical engineering.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 104 p.
  • 总页数 104
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号