首页> 外文学位 >Early evolution of environments and metabolism: insights from nitrogen, selenium and sulfur isotopes.
【24h】

Early evolution of environments and metabolism: insights from nitrogen, selenium and sulfur isotopes.

机译:环境和新陈代谢的早期演变:氮,硒和硫同位素的见解。

获取原文
获取原文并翻译 | 示例

摘要

The evolution of planet Earth and its biosphere are tightly linked through global biogeochemical cycles, and this dissertation seeks to explore this linkage during the Precambrian with new strategies and geochemical techniques. The first chapter is the result of a group project in which we propose that multiple environments and processes were involved in prebiotic chemistry. We conclude that the origin of life can be more plausibly explained if the various building blocks of living cells slowly emerged from global geochemical cycles. In the second part of my thesis (Chapters 2-3), I explore how microorganisms exploited and modified these cycles, in particular the global sulfur cycle. Statistical analyses of sulfur concentrations and isotopic ratios in marine mudrocks support an early Archean origin of microbial sulfate reduction and late Archean enhancement of biological pyrite oxidation on land, leading to increasing fluxes of sulfate and other nutrients to the ocean. In the third part (Chapters 4-7), I further test this hypothesis through analyses of selenium isotopes and abundances. After establishing a new analytical technique, I show that selenium was mobilized by oxidative weathering in the late Archean, concurrently with sulfur. Because of selenium's high redox potential, these results confirm the antiquity of oxygenic photosynthesis. A compilation of selenium data through time further indicates oxygenation of the deep ocean in the Neoproterozoic or mid-Paleozoic, which may have facilitated the rise of metazoans. The late Permian mass extinction, however, was apparently not directly linked to an episode of ocean anoxia. The third part of this work (Chapters 8-10) focuses on nitrogen isotopes as a proxy for nitrogen speciation in the water column. Results show that biological nitrogen fixation using Mo-nitrogenase dates back to at least the mid-Archean and was the dominant nitrogen source at that time. Marine nitrate concentrations were also low in the mid-Proterozoic, which may have restricted the radiation of eukaryotic life. Lastly, I use nitrogen isotopes in lacustrine sediments as a proxy for alkalinity and show that alkaline lakes may have been common on Archean continents, making them potentially important environments for the origin and early evolution of life.
机译:行星及其生物圈的演化通过全球生物地球化学循环紧密地联系在一起,因此本论文力图用新的策略和地球化学技术探索前寒武纪时期的这种联系。第一章是一个小组项目的结果,其中我们建议益生元化学涉及多个环境和过程。我们得出的结论是,如果生命细胞的各种构成要素从全球地球化学循环中缓慢出现,则可以更合理地解释生命的起源。在论文的第二部分(第2-3章)中,我探索了微生物如何利用和修饰这些循环,特别是全球硫循环。海洋泥岩中硫浓度和同位素比值的统计分析支持陆地微生物硫酸盐还原的早期太古宙起源和陆地上生物黄铁矿氧化的晚期古代宙斯激增,导致硫酸盐和其他养分向海洋的通量增加。在第三部分(第4-7章)中,我将通过分析硒同位素和丰度进一步检验这一假设。建立一种新的分析技术后,我证明了硒是由于太古宙时代晚期的氧化风化而动员了硫。由于硒的高氧化还原电势,这些结果证实了氧光合作用的古代。随时间推移收集的硒数据进一步表明,新元古代或中古生代深海的氧化作用可能促进了后生动物的崛起。然而,二叠纪晚期大规模灭绝显然与海洋缺氧事件没有直接联系。这项工作的第三部分(第8-10章)重点讨论氮同位素,作为水柱中氮形态的代表。结果表明,使用Mo-硝化酶进行生物固氮至少可以追溯到Archean中段,并且是当时的主要氮源。在元古代中期,海洋硝酸盐浓度也很低,这可能限制了真核生物的辐射。最后,我用湖沉积物中的氮同位素作为碱度的代表,并表明碱湖在古宙斯大陆上可能很普遍,使其成为生命起源和早期进化的潜在重要环境。

著录项

  • 作者

    Stueeken, Eva E.;

  • 作者单位

    University of Washington.;

  • 授予单位 University of Washington.;
  • 学科 Geobiology.;Geochemistry.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 470 p.
  • 总页数 470
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号