首页> 外文学位 >Light Trapping in Monocrystalline Silicon Solar Cells Using Random Upright Pyramids.
【24h】

Light Trapping in Monocrystalline Silicon Solar Cells Using Random Upright Pyramids.

机译:使用随机垂直金字塔在单晶硅太阳能电池中进行光陷获。

获取原文
获取原文并翻译 | 示例

摘要

Crystalline silicon has a relatively low absorption coefficient, and therefore, in thin silicon solar cells surface texturization plays a vital role in enhancing light absorption. Texturization is needed to increase the path length of light through the active absorbing layer. The most popular choice for surface texturization of crystalline silicon is the anisotropic wet-etching that yields pyramid-like structures. These structures have shown to be both simple to fabricate and efficient in increasing the path length; they outperform most competing surface texture. Recent studies have also shown these pyramid-like structures are not truly square-based 54.7 degree pyramids but have variable base angles and shapes. In addition, their distribution is not regular -- as is often assumed in optical models -- but random. For accurate prediction of performance of silicon solar cells, it is important to investigate the true nature of the surface texture that is achieved using anisotropic wet-etching, and its impact on light trapping. We have used atomic force microscopy (AFM) to characterize the surface topology by obtaining actual height maps that serve as input to ray tracing software. The height map also yields the base angle distribution, which is compared to the base angle distribution obtained by analyzing the angular reflectance distribution measured by spectrophotometer to validate the shape of the structures. Further validation of the measured AFM maps is done by performing pyramid density comparison with SEM micrograph of the texture. Last method employed for validation is Focused Ion Beam (FIB) that is used to mill the long section of pyramids to reveal their profile and so from that the base angle distribution is measured. After that the measured map is modified and the maps are generated keeping the positional randomness (the positions of pyramids) and height of the pyramids the same, but changing their base angles. In the end a ray tracing software is used to compare the actual measured AFM map and also the modified maps using their reflectance, transmittance, angular scattering and most importantly path length enhancement, absorbance and short circuit current with lambertian scatterer.
机译:结晶硅具有相对较低的吸收系数,因此,在薄硅太阳能电池中,表面纹理化对增强光吸收起着至关重要的作用。需要纹理化以增加通过有源吸收层的光的路径长度。晶体硅的表面纹理化最流行的选择是各向异性湿法刻蚀,该工艺产生金字塔状的结构。这些结构已经显示出易于制造并且有效地增加了路径长度。它们的性能优于大多数竞争产品。最近的研究还表明,这些金字塔状结构并不是真正的基于正方形的54.7度金字塔,而是具有可变的底角和形状。此外,它们的分布不是规则的-光学模型中通常会假设-而是随机的。为了准确预测硅太阳能电池的性能,研究使用各向异性湿法刻蚀所获得的表面纹理的真实性质及其对光阱的影响非常重要。我们已经使用原子力显微镜(AFM)通过获取实际的高度图来表征表面拓扑,这些高度图用作光线跟踪软件的输入。高度图还会产生底角分布,将其与通过分析分光光度计测量的角反射率分布以验证结构的形状而获得的底角分布进行比较。通过与纹理的SEM显微照片进行金字塔密度比较,可以对测得的AFM图进行进一步的验证。用于验证的最后一种方法是聚焦离子束(FIB),该离子束用于铣削金字塔的长截面以显示其轮廓,从而测量底角分布。之后,修改测得的地图,并生成地图,以保持位置随机性(金字塔的位置)和金字塔的高度相同,但改变其底角。最后,使用射线追踪软件比较实际测得的AFM图和修改后的图,它们的反射率,透射率,角度散射以及最重要的是通过朗伯散射体的路径长度增强,吸收率和短路电流。

著录项

  • 作者

    Manzoor, Salman.;

  • 作者单位

    Arizona State University.;

  • 授予单位 Arizona State University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 M.S.
  • 年度 2014
  • 页码 122 p.
  • 总页数 122
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号