首页> 外文学位 >Numerical Simulation of Nanoparticle Transportation and Deposition in Pulmonary Vasculature.
【24h】

Numerical Simulation of Nanoparticle Transportation and Deposition in Pulmonary Vasculature.

机译:纳米粒子在肺血管中运输和沉积的数值模拟。

获取原文
获取原文并翻译 | 示例

摘要

Nanoparticle holds significant promise as the next generation of drug carrier that can realize targeted therapy with minimal toxicity. To improve the delivery efficiency of nanoparticles, it is important to study their transport and deposition in blood flow. Many factors, like particle size, vessel geometry and blood flow rate, have significant influence on the particle transport, thus on the deposition fraction and distribution. In this thesis, computational fluid dynamics (CFD) simulations of blood flow and drug particle deposition were conducted in four models representing the human lung vasculature: artificial artery geometry, artificial vein geometry, original geometry and over-smoothed original geometry. Flow conditions used included both steady-state inlet flow and pulsatile inlet flow. Parabolic flow pattern and lumped mathematic model were used for inlet and outlet boundary conditions respectively. Blood flow was treated as laminar and Newtonian. Particle trajectories were calculated in each of these models by solving the integrated force balance on the particle, and adding a stochastic Brownian term at each step. A receptor-ligand model was integrated to simulate the particle binding probability. The results indicate the following: (i) Pulsatile flow can accelerate the particle binding activity and improve the particle deposition fraction on bifurcation areas; (ii) Unlike drug delivery in lung respiratory system, particle diffusion is very weak in blood flow, no clear relationship between the particle size and deposition area was found in our four-generation lung vascular model; and (iii) Surface imperfections have the dominant effect on particle deposition fraction over a wide range of particle sizes. Ideal artificial geometry is not sufficient to predict drug deposition, and an accurate image based geometry is required.
机译:纳米颗粒作为下一代药物载体具有广阔的前景,可以实现具有最小毒性的靶向治疗。为了提高纳米颗粒的输送效率,研究其在血流中的运输和沉积非常重要。颗粒大小,血管几何形状和血液流速等许多因素对颗粒的运输具有重要影响,因此对沉积分数和分布也有重要影响。本文在代表人肺血管的四个模型中进行了血流和药物颗粒沉积的计算流体动力学(CFD)模拟:人造动脉几何,人造静脉几何,原始几何和过度平滑的原始几何。所使用的流量条件包括稳态进气流量和脉动进气流量。抛物线流动模式和集总数学模型分别用于入口和出口边界条件。将血流视为层流和牛顿流。在这些模型中的每一个中,通过解决粒子上的积分力平衡并在每个步骤中添加随机布朗项来计算粒子轨迹。整合受体-配体模型以模拟粒子结合概率。结果表明:(i)脉冲流可以加速粒子的结合活性,并改善分叉区域的粒子沉积率; (ii)与肺呼吸系统中的药物输送不同,颗粒的扩散在血流中非常弱,在我们的四代肺血管模型中,颗粒大小与沉积区域之间没有明确的关系; (iii)表面缺陷在较大的粒径范围内对颗粒沉积分数具有主要影响。理想的人造几何形状不足以预测药物沉积,因此需要基于图像的准确几何形状。

著录项

  • 作者

    Zheng, Junda.;

  • 作者单位

    Lehigh University.;

  • 授予单位 Lehigh University.;
  • 学科 Biophysics Biomechanics.;Engineering Mechanical.
  • 学位 M.S.
  • 年度 2014
  • 页码 59 p.
  • 总页数 59
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号