首页> 外文学位 >Programmable Self-assembly For Microsystem Integration.
【24h】

Programmable Self-assembly For Microsystem Integration.

机译:用于微系统集成的可编程自组装。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation studies and improves upon template-based self-assembly processes as a suite of techniques for microsystem integration. We first provide an updated definition for microscale self-assembly, and provide a framework that separates all self-assembly processes into three distinct phases which can be independently analyzed. A catalyst-enhanced self-assembly process is then presented, wherein non-participating `catalyst' components are introduced to a dry-environment batch-assembly process, demonstrating 25 - 50% reduction in acceleration needed to trigger part motion and up to four times increase in concentration of parts in motion due to addition of catalysts. The presence of catalytic parts allows stochastic part-to-trap assemblies to be performed at lower accelerations than without, and thus allow said assemblies to be performed further from the acceleration-levels required to free trapped parts; this reduces the probability of part-disassembly, thus improving assembly yield. A model from chemical kinetics theory is adapted for the analysis of this catalyst-enhanced self-assembly process. A variation on the prevalent methodology of driving a stochastic assembly process, using vibrations perpendicular to the assembly surface, is then presented. Using a modified actuator that introduces agitations that are in the plane of the assembly surface, unprecedented control of micropart-motion has been achieved; of note, components can be reliability induced into a "walking mode", where components are moved across surfaces in predetermined directions with a surface-hugging motion. Walking modes enables parts to be moved across surfaces and into binding sites, but do not cause trapped components to disassemble due to the suppression of out-of-plane agitation. Repeatable and programmable complete delivery of components into arrays of traps is achieved in open loop and feedback-enhanced configurations. The theoretical study of this template-based assembly method is performed with (370 x 370 x 150 microm3) test components, and walking modes are statistically characterized and a chemical kinetics inspired model is developed. Said self-assembly process is then applied on the assembly of 01005 (0.016" x 0.008", 0.4 mm x 0.2 mm) surface mount technology resistors and capacitors, demonstrating the transportation, self-alignment, and adherence phases of our template-based assembly process. Finally, the magnetically aided assembly of 01005 surface mount components in a vertical pose is studied by adapting the visual-feedback systems used throughout the thesis work. Electrical performance has been verified, and our process is demonstrated to be competitive against integrated passive elements in terms of area-footprint and capacitive and resistive property-tolerances.
机译:本文对基于模板的自组装过程作为一套微系统集成技术进行了研究和改进。我们首先提供了微型自组装的更新定义,并提供了一个框架,将所有自组装过程分为三个可以独立分析的不同阶段。然后提出了一种增强催化剂的自组装过程,其中将不参与的“催化剂”组分引入到干燥环境的批量组装过程中,这表明触发零件运动所需的加速度降低了25%至50%,最多降低了四倍。由于添加催化剂,运动部件的浓度增加。催化部件的存在允许随机的部件-捕集器组件以比没有加速时更低的加速度执行,并因此允许在比释放被捕集的部件所需的加速度水平更远的位置执行所述组件;这降低了零件拆卸的可能性,从而提高了装配良率。化学动力学理论的模型适用于这种催化剂增强的自组装过程的分析。然后介绍了使用垂直于装配表面的振动来驱动随机装配过程的流行方法的变化。使用改进的执行器,该执行器在装配表面的平面内引入搅动,实现了对零件运动的空前控制。值得注意的是,可以将组件可靠性引入“行走模式”,在该模式中,组件通过表面拥抱运动沿预定方向在表面上移动。行走模式可以使零件在整个表面上移动并进入结合部位,但不会由于抑制平面外搅动而导致被困组件分解。在开环和反馈增强配置中,可以将组件可重复且可编程地将组件完全交付到陷阱阵列中。这种基于模板的组装方法的理论研究是使用(370 x 370 x 150 microm3)测试组件进行的,并且对步行模式进行了统计表征,并开发了化学动力学启发的模型。然后,将上述自组装过程应用于01005(0.016“ x 0.008”,0.4 mm x 0.2 mm)表面贴装技术电阻器和电容器的组装,证明了我们基于模板的组装的运输,自对准和粘附阶段处理。最后,通过调整整个论文工作中使用的视觉反馈系统,研究了以垂直姿势对01005表面安装组件进行磁辅助组装。电气性能已得到验证,并且我们的工艺在面积尺寸以及电容和电阻特性容差方面都证明与集成的无源元件相比具有竞争力。

著录项

  • 作者

    Hoo, Ji Hao.;

  • 作者单位

    University of Washington.;

  • 授予单位 University of Washington.;
  • 学科 Engineering Electronics and Electrical.;Engineering Packaging.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 95 p.
  • 总页数 95
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号