首页> 外文学位 >Substrate Composition and Mechanical Engagement in Neuron Regeneration.
【24h】

Substrate Composition and Mechanical Engagement in Neuron Regeneration.

机译:神经元再生中的底物组成和机械参与。

获取原文
获取原文并翻译 | 示例

摘要

Development and regeneration of the nervous system relies on the interaction between growing neurites and the extracellular environment. Growth cones, the motile sensory tips of elongating neurites, interpret chemical cues and exert forces against external structures to form an intricate web of connections. We have used regenerating Aplysia californica bag cell neurons to investigate the mechanical interaction between growth cone and substrate and the effect of substrate composition on regeneration. We found that laminin and substrate-adsorbed hemolymph proteins from Aplysia have a synergistic effect on bag cell regeneration. This novel interaction promotes both outgrowth and branching, demonstrating that substrate composition can have a profound effect on regeneration. Forces exerted by the growth cone against their substrate can also influence regeneration. We used traction force microscopy to measure the force generated by migrating bag cell growth cones. We found that traction stresses are primarily transmitted to the substrate through the peripheral actin-rich domain. Calculation of net growth cone traction force revealed that neurites are under tension, although a substantial proportion of the force is balanced within the growth cone and does not contribute to tension. Measuring traction force over time revealed that stress patterns are extremely dynamic but tension levels are stable, suggesting that the neurite imposes a constant tension that is continuously redistributed among dynamic adhesions. Our observations suggest that peripheral traction may initiate directional change by bending the end of the neurite towards regions of high force. We also present evidence that extracellular proteins, in addition to serving as a growth-promoting adhesion platform, may be capable storing and generating force. The results presented here reveal many complexities in the interaction between neurites and their extracellular environment, which will provide the basis for future studies.
机译:神经系统的发育和再生依赖于生长的神经突与细胞外环境之间的相互作用。生长锥是延伸神经突的运动感觉末端,可解释化学线索并向外部结构施加力以形成复杂的连接网。我们已使用再生的加州睡莲袋细胞神经元来研究生长锥和底物之间的机械相互作用以及底物组成对再生的影响。我们发现层粘连蛋白和来自Aplysia的底物吸附的血淋巴蛋白对袋细胞再生具有协同作用。这种新颖的相互作用促进了生长和分支,表明底物组成可以对再生产生深远的影响。生长锥对其底物施加的力也会影响再生。我们使用了牵引力显微镜来测量袋状细胞生长锥迁移所产生的力。我们发现,牵引应力主要是通过周围富含肌动蛋白的结构域传递到基底的。净生长锥牵引力的计算表明,神经突处于张力下,尽管很大一部分力在生长锥内平衡且不会导致张力。随时间测量牵引力表明应力模式是动态的,但张力水平是稳定的,这表明神经突施加了恒定的张力,该张力在动力粘着剂中不断地重新分布。我们的观察结果表明,通过将神经突的末端向强力区域弯曲,周边牵引可能会引发方向变化。我们还提供了证据,表明胞外蛋白除用作促进生长的粘附平台外,还可能能够存储和产生力。本文介绍的结果揭示了神经突与其细胞外环境之间相互作用的许多复杂性,这将为今后的研究提供基础。

著录项

  • 作者

    Hyland, Callen.;

  • 作者单位

    Yale University.;

  • 授予单位 Yale University.;
  • 学科 Biology Cell.;Biophysics General.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 153 p.
  • 总页数 153
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号