首页> 外文学位 >Polymer electrolyte membranes for electrochemical energy conversion and storage systems: Fuel cells and redox flow batteries.
【24h】

Polymer electrolyte membranes for electrochemical energy conversion and storage systems: Fuel cells and redox flow batteries.

机译:用于电化学能量转换和存储系统的聚合物电解质膜:燃料电池和氧化还原液流电池。

获取原文
获取原文并翻译 | 示例

摘要

Direct methanol fuel cells (DMFCs) and redox flow batteries (RFBs) are well-known electrochemical energy conversion/storage systems that utilize redox reactions to convert or store electricity. Ion exchange membranes (IEMs) are used in DMFCs and RFBs as electrolyte separators. The critical requirements for IEMs in these applications are high ionic conductivity, low electrolyte permeability, high stability, and low cost.;Silsesquioxane (SQO)-based sulfonated poly(etheretherketone) composite membranes were synthesized. Morphological changes in the composite membranes resulting from the introduction of SQO were studied using small-angle x-ray scattering. A sharp decrease in proton conductivity with SQO loading (> 20 wt%) was attributed to morphological changes in the membrane, including agglomeration and inhomogeneous dispersion of SQO particles within the ionic domains.;Anion exchange membranes (AEMs) based on quaternized cardopoly(etherketone) (QPEK-C) were prepared and evaluated for all-vanadium RFB (VRFB) applications. The QPEK-C AEMs with different degrees of functionalization (0.9-1.6) exhibited sulfate ion conductivities ranging between 5.6 and 15.2 mS cm-1 at 30 °C. The AEM had a lower VO2+ permeability (2.8x10-8 cm2 s-), compared to that of NafionRTM 212 (2.9+/-0.2 x 10-7 cm2 s-1), which was attributed to the Donnan exclusion effect. The mechanical strength of QPEK-C AEM degraded by 35% after exposure to a 1.5 M VO2+ solution for 1500 hours due to the oxidation of aromatic rings. A single-cell VRFB employing the AEM separator yielded current and energy efficiencies (at 30 mA cm -2) of 97-99% and 80-82 %, respectively. Enhanced sulfate ion conductivity (8.4 +/- 0.2 mS cm-1) and decreased VO2+ permeability (0.53x10-9 cm2 s-1) were achieved by incorporating 20 wt% of n-(trimethoxysilylpropyl)-n,n,n-trimethylammonium additives into QPEK-C, (the pristine QPEK-C AEM yielded corresponding values of 4.5 +/- 0.5 mS cm-1 and 1.09x10-9 cm 2 s-1). About 99% coulombic efficiency was achieved with the VRFBs employing the composite AEM. However, a rapid reduction of the ionic conductivity down to the value of the pristine membrane was observed when the composite AEM was immersed in 1.5 M VO2+ solution for 3 days.;Vanadium-cerium RFBs (V-Ce RFBs) evaluated with QPEK-C AEM separators yielded identical energy efficiency (84%) to corresponding RFBs evaluated with NafionRTM 212. However, after over 20 charge-discharge cycles, the V-Ce RFB with the AEM separator yielded unchanged efficiency and capacity, while a 50% loss of capacity was observed with the Nafion RTM separator. This suggested that QPEK-C AEMs are promising candidates for RFB separators when different cations are used in the two electrolyte solutions, in that they act as efficient barriers that preclude the intermixing of the cations due to the Donnan exclusion effect.
机译:直接甲醇燃料电池(DMFC)和氧化还原液流电池(RFB)是众所周知的电化学能量转换/存储系统,利用氧化还原反应来转换或存储电能。离子交换膜(IEM)在DMFC和RFB中用作电解质隔板。在这些应用中对IEM的关键要求是高离子电导率,低电解质渗透性,高稳定性和低成本。合成了倍半硅氧烷(SQO)基磺化聚醚醚酮复合膜。使用小角度X射线散射研究了由SQO引入导致的复合膜的形态变化。质子电导率随SQO含量(> 20 wt%)急剧下降归因于膜的形态变化,包括SQO颗粒在离子域内的团聚和不均匀分散。;基于季铵化的聚醚醚酮的阴离子交换膜(AEM) )(QPEK-C)的制备和评估用于全钒RFB(VRFB)应用。在30°C下,具有不同官能度(0.9-1.6)的QPEK-C AEM的硫酸盐离子电导率范围为5.6至15.2 mS cm-1。与NafionRTM 212(2.9 +/- 0.2 x 10-7 cm2 s-1)相比,AEM的VO2 +渗透性较低(2.8x10-8 cm2 s-),这归因于Donnan排斥效应。暴露于1.5 M VO2 +溶液中1500小时后,由于芳环的氧化,QPEK-C AEM的机械强度降低了35%。采用AEM隔板的单电池VRFB产生的电流效率和能量效率(在30 mA cm -2时)分别为97-99%和80-82%。通过掺入20 wt%的n-(三甲氧基甲硅烷基丙基)-n,n,n-三甲基铵,硫酸盐离子电导率提高(8.4 +/- 0.2 mS cm-1),VO2 +渗透率降低(0.53x10-9 cm2 s-1)将添加剂加入QPEK-C中(原始的QPEK-C AEM产生相应的值为4.5 +/- 0.5 mS cm-1和1.09x10-9 cm 2 s-1)。采用复合AEM的VRFB可实现约99%的库仑效率。但是,将复合材料AEM浸入1.5 M VO2 +溶液中3天后,观察到离子电导率迅速降低至原始膜的值。 AEM分离器产生的能量效率与使用NafionRTM 212评估的相应RFB相同(84%)。但是,经过20个充放电循环后,带有AEM分离器的V-Ce RFB产生不变的效率和容量,而容量损失为50%使用Nafion RTM分离器观察到。这表明,当在两种电解质溶液中使用不同的阳离子时,QPEK-C AEMs有望成为RFB分离器的候选者,因为它们具有有效的势垒,由于Donnan排斥效应而阻止了阳离子的混合。

著录项

  • 作者

    Yun, Sukhwan.;

  • 作者单位

    Illinois Institute of Technology.;

  • 授予单位 Illinois Institute of Technology.;
  • 学科 Chemical engineering.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 232 p.
  • 总页数 232
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号