首页> 外文学位 >Analysis of Rapid Pipeline Filling Including Column Separation & Entrapped Air Effects
【24h】

Analysis of Rapid Pipeline Filling Including Column Separation & Entrapped Air Effects

机译:包括柱分离和截留空气效应在内的快速管道填充分析

获取原文
获取原文并翻译 | 示例

摘要

Frequent pipe filling in intermittent and other pipe systems may result in extreme transient flow conditions mainly caused by the formation and destruction of two-phase flows. This thesis aims at providing insights into select issues associated with rapid pipe filling, including water column separation and rejoinder, a more complete physical understanding of rapid pressurization of the pipe systems containing entrapped air, and improvements in the numerical modeling of transient mixed flow in pipelines. Through an extensive numerical exploration, this thesis identifies three new sources of water column separation which can produce extensive water hammer pressures. The underlying physics associated with these findings are explained, and the sensitivity of the resulting water hammer pressures to the different parameters of pipe systems is revealed. The key challenges of experiments with this dynamic event are identified and a test rig is proposed. Numerical exploration also reveals that air valves can modify water column separation, but they can, on the other hand, result in a column separation-like event if they are not sized properly. This work also proposes an energy auditing approach under light of which the complex physics associated with rapid pressurization of pipe systems with entrapped air can be readily explained. This approach is successfully applied to a variety of problems. Finally, the causes of the numerical instability associated with the Preissmann Slot Method -- issues that have been a challenge for over four decades -- are explored and a new non-oscillatory numerical model is shown to be able to completely remove the numerical instability issue even when high waves speeds are modeled.
机译:间歇性和其他管道系统中频繁的管道填充可能会导致极端的瞬态流动状况,这主要是由于两相流的形成和破坏所致。本文旨在提供与快速填充管道相关的精选问题的见解,包括水柱分离和重新连接,对包含截留空气的管道系统的快速增压的更完整的物理理解,以及对管道中瞬态混合流数值模型的改进。通过广泛的数值探索,本论文确定了三种新的水柱分离源,它们可以产生较大的水锤压力。解释了与这些发现相关的基本物理原理,并揭示了所产生的水锤压力对管道系统不同参数的敏感性。确定了使用此动态事件进行实验的主要挑战,并提出了测试平台。数值研究还表明,空气阀可以改变水柱的分离,但另一方面,如果尺寸不正确,它们可能会导致类似水柱分离的事件。这项工作还提出了一种能源审计方法,根据该方法,可以很容易地解释与夹带空气对管道系统快速加压相关的复杂物理过程。此方法已成功应用于各种问题。最后,探讨了与Preissmann Slot方法相关的数值不稳定的原因-过去40年来一直是一个难题-并显示了一种新的非振荡数值模型能够完全消除数值不稳定问题即使在模拟高波速时也是如此。

著录项

  • 作者

    Malekpour, Ahmad.;

  • 作者单位

    University of Toronto (Canada).;

  • 授予单位 University of Toronto (Canada).;
  • 学科 Civil engineering.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 281 p.
  • 总页数 281
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号