首页> 外文学位 >Transported probability density function methods for coal combustion: Toward high temperature oxy-coal for direct power extraction.
【24h】

Transported probability density function methods for coal combustion: Toward high temperature oxy-coal for direct power extraction.

机译:煤炭燃烧的运输概率密度函数方法:朝向直接提取电力的高温氧煤。

获取原文
获取原文并翻译 | 示例

摘要

A transported composition probability density function (PDF) method is developed for coal combustion, targeting high-temperature oxy-coal combustion for direct power extraction using magnetohydrodynamics. A consistent hybrid Lagrangian particle/Eulerian mesh algorithm is used to solve the modeled PDF transport equation for the gas phase, with finite-rate gas-phase chemistry. The model includes standard k -- epsilon turbulence, gradient transport for scalars, and a Euclidean minimum spanning tree (EMST) mixing model. A separate Lagrangian description is used to solve for the coal particle phase, including particle tracking, devolatilization and surface reaction models. Inter-phase coupling models are proposed for the couplings between the gas phase and the solid phase. A spectral photon Monte Carlo (PMC) method is built into the framework to account for the spectral radiative heat transfer for the gas phase. A systematic hierarchical approach has been pursued for model development. First, simulations were performed for laboratory-scale syngas (CO/H2/N2)-air jet flames where finite-rate chemistry is important. The next step was to simulate an oxy-natural gas furnace where the environment is as close as possible to that in an oxy-coal system, without the complications of a solid fuel. The model was then extended to include coal particles, and was tested both for a nonreacting particle-laden expansion flow and for two reacting air-coal jet flames. It has been found that turbulence-chemistry interactions are important in all the validation cases when species with slow chemistry are considered (e.g., CO, NO). Radiation dominates the heat-transfer characteristics in a high-temperature oxy-combustion environment, although the effects of turbulence-radiation interactions might not be significant. For coal combustion, finite-rate chemistry is important for correct flame structure predictions. The high-fidelity models constructed here have proven to be robust in different combustion environments, and have been exercised to calibrate simpler models and to test model assumptions that often are included in simpler models.
机译:开发了一种用于煤燃烧的运输成分概率密度函数(PDF)方法,其目标是利用磁流体动力学将高温氧煤燃烧用于直接发电。使用一致的混合拉格朗日粒子/欧拉网格算法,用有限速率气相化学方法求解气相的模型PDF输运方程。该模型包括标准k-ε湍流,标量的梯度输运和欧几里得最小生成树(EMST)混合模型。单独的拉格朗日描述用于求解煤颗粒相,包括颗粒跟踪,脱挥发分和表面反应模型。针对气相和固相之间的耦合,提出了相间耦合模型。光谱光子蒙特卡罗(PMC)方法内置于框架中,以说明气相的光谱辐射热传递。对于模型开发,一直追求系统的分层方法。首先,对实验室规模的合成气(CO / H2 / N2)-空气喷射火焰进行了模拟,在有限速率化学反应很重要的地方。下一步是模拟一个氧气-天然气炉,其环境尽可能接近于氧气-煤系统,而没有固体燃料的复杂性。然后将模型扩展到包括煤颗粒,并测试了未反应的带颗粒的膨胀流和两个反应性的空气煤喷射火焰。已经发现,当考虑到具有慢化学性质的物种(例如,CO,NO)时,湍流-化学相互作用在所有验证情况下都是重要的。尽管湍流-辐射相互作用的影响可能并不显着,但辐射在高温氧燃烧环境中仍占主导地位。对于煤燃烧,有限速率化学对于正确的火焰结构预测很重要。事实证明,这里构造的高保真度模型在不同的燃烧环境中具有较强的鲁棒性,并且已被用于校准更简单的模型并测试通常包含在更简单模型中的模型假设。

著录项

  • 作者

    Zhao, Xinyu.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Mechanical engineering.;Chemistry.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 189 p.
  • 总页数 189
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号