首页> 外文学位 >On-chip integrated functional near infra-red spectroscopy (fNIRS) photoreceiver for portable brain imaging.
【24h】

On-chip integrated functional near infra-red spectroscopy (fNIRS) photoreceiver for portable brain imaging.

机译:片上集成功能性近红外光谱(fNIRS)光接收器,用于便携式大脑成像。

获取原文
获取原文并翻译 | 示例

摘要

Optical brain imaging using functional near infra-red spectroscopy (fNIRS) offers a direct and noninvasive tool for monitoring of blood oxygenation. fNIRS is a noninvasive, safe, minimally intrusive, and high temporal-resolution technique for real-time and long-term brain imaging. It allows detecting both fast-neuronal and slow-hemodynamic signals. Besides the significant advantages of fNIRS systems, they still suffer from few drawbacks including low spatial-resolution, moderately high-level noise and high-sensitivity to movement. In order to overcome the limitations of currently available non-portable fNIRS systems, we have introduced a new low-power, miniaturized on-chip photodetector front-end intended for portable fNIRS systems. It includes silicon avalanche photodiode (SiAPD), Transimpedance amplifier (TIA), and Quench- Reset circuitry implemented using standard CMOS technologies to operate in both linear and Geiger modes. So it can be applied for both continuous-wave fNIRS (CW-fNIRS) and also single-photon counting applications. Several SiAPDs have been implemented in novel structures and shapes (Rectangular, Octagonal, Dual, Nested, Netted, Quadratic and Hexadecagonal) using different premature edge breakdown prevention techniques. The main characteristics of the SiAPDs are validated and the impact of each parameter and the device simulators (TCAD, COMSOL, etc.) have been studied based on the simulation and measurement results. Proposed techniques exhibit SiAPDs with high avalanche-gain (up to 119), low breakdown-voltage (around 12V) and high photon-detection efficiency (up to 72% in NIR region) in additional to a low dark-count rate (down to 30Hz at 1V excess bias voltage). Three new high gain-bandwidth product (GBW) and low-noise TIAs are introduced and implemented based on distributed-gain concept, logarithmic-amplification and automatic noise-rejection and have been applied in linear-mode of operation. The implemented TIAs offer a power-consumption around 0.4 mW, transimpedance gain of 169 dBO, and input-output current/voltage noises in fA/pV range accompanied with ability to tune the gain, bandwidth and power-consumption in a wide range. The implemented mixed quench-reset circuit (MQC) and controllable MQC (CMQC) front-ends offer a quench-time of 10ns, a maximum power-consumption of 0.4 mW, with a controllable hold-off and reset-times. The on-chip integration of SiAPDs with TIA and photon-counting circuitries has been demonstrated showing improvement of the photodetection-efficiency, specially regarding to the sensitivity, power-consumption and signal-to-noise ratio (SNR) characteristics.
机译:使用功能性近红外光谱(fNIRS)进行的光学脑成像技术提供了一种直接且无创的工具来监测血液氧合。 fNIRS是一种用于实时和长期脑成像的无创,安全,侵入性最小且具有高时间分辨率的技术。它可以检测快速神经元和慢血流动力学信号。除了fNIRS系统的显着优点外,它们还具有一些缺陷,包括空间分辨率低,中等水平的高噪声和对运动的高灵敏度。为了克服当前可用的非便携式fNIRS系统的局限性,我们推出了一种新的低功耗,小型化的片上光电探测器前端,旨在用于便携式fNIRS系统。它包括硅雪崩光电二极管(SiAPD),跨阻放大器(TIA)和淬火复位电路,这些电路使用标准CMOS技术实现,可在线性和Geiger模式下工作。因此,它既可以应用于连续波fNIRS(CW-fNIRS),也可以应用于单光子计数应用。使用不同的过早边缘击穿预防技术,已经以新颖的结构和形状(矩形,八边形,对角形,嵌套,网状,二次形和六边形)实现了几种SiAPD。验证了SiAPD的主要特性,并根据仿真和测量结果研究了每个参数和设备仿真器(TCAD,COM​​SOL等)的影响。拟议的技术显示出具有高雪崩增益(高达119),低击穿电压(约12V)和高光子检测效率(在NIR区域高达72%)的SiAPD,此外还具有较低的暗计数率(低至在1V过量偏置电压下为30Hz)。基于分布式增益概念,对数放大和自动噪声抑制,引入并实现了三种新的高增益带宽乘积(GBW)和低噪声TIA,并已应用于线性工作模式。实施的TIA的功耗约为0.4 mW,跨阻增益为169 dBO,输入/输出电流/电压噪声为fA / pV范围,并且能够在宽范围内调节增益,带宽和功耗。已实现的混合猝灭复位电路(MQC)和可控MQC(CMQC)前端的猝灭时间为10ns,最大功耗为0.4 mW,具有可控的释抑和复位时间。已经证明SiAPD与TIA和光子计数电路的片上集成显示出光检测效率的提高,特别是在灵敏度,功耗和信噪比(SNR)特性方面。

著录项

  • 作者

    Kamrani, Ehsan.;

  • 作者单位

    Ecole Polytechnique, Montreal (Canada).;

  • 授予单位 Ecole Polytechnique, Montreal (Canada).;
  • 学科 Engineering Biomedical.;Physics Optics.;Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 193 p.
  • 总页数 193
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号