首页> 外文学位 >Mechanics of regular, chiral and hierarchical honeycombs.
【24h】

Mechanics of regular, chiral and hierarchical honeycombs.

机译:常规,手性和分级蜂窝的力学。

获取原文
获取原文并翻译 | 示例

摘要

Approaches to obtain analytical closed-form expressions for the macroscopic elastic, plastic collapse, and buckling response of various two-dimensional cellular structures are presented. First, we will provide analytical models to estimate the effective elastic modulus and Poisson's ratio of hierarchical honeycombs using the concepts of mechanics of materials and compare the analytical results with finite element simulations and experiments. For plastic collapse, we present a numerical minimization procedure to determine the macroscopic `plastic collapse strength' of a tessellated cellular structure under a general stress state. The method is illustrated with sample cellular structures of regular and hierarchical honeycombs. Based on the deformation modes found by minimization of plastic dissipation, closed-form expressions for strength are derived. The work generalizes previous studies on plastic collapse analysis of lattice structures, which are limited to very simple loading conditions. Finally, the method for calculation of buckling strength is based on classical beam-column end-moment behavior expressed in a matrix form. It is applied to regular, chiral, and hierarchical honeycombs with square, triangular, and hexagonal unit cells to determine their buckling strength under a general macroscopic stress state. The results were verified using finite element eigenvalue analysis.
机译:提出了获得各种二维单元结构的宏观弹性,塑性塌陷和屈曲响应的解析闭合形式表达式的方法。首先,我们将提供解析模型,以使用材料力学的概念来估算分层蜂窝的有效弹性模量和泊松比,并将分析结果与有限元模拟和实验进行比较。对于塑性塌陷,我们提出了一种数值最小化程序,以确定在一般应力状态下棋盘格状蜂窝结构的宏观“塑性塌陷强度”。用规则和分层蜂窝的示例蜂窝结构说明了该方法。根据最小化塑料耗散而发现的变形模式,得出强度的封闭形式。这项工作概括了以前对晶格结构塑性塌陷分析的研究,这些研究仅限于非常简单的加载条件。最后,屈曲强度的计算方法是基于以矩阵形式表示的经典梁柱端部弯矩特性。它适用于具有正方形,三角形和六边形晶胞的规则,手性和分层蜂窝,以确定它们在一般宏观应力状态下的屈曲强度。使用有限元特征值分析验证了结果。

著录项

  • 作者

    Haghpanah Jahromi, Babak.;

  • 作者单位

    Northeastern University.;

  • 授予单位 Northeastern University.;
  • 学科 Engineering Mechanical.;Applied Mechanics.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 130 p.
  • 总页数 130
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号