首页> 外文学位 >Modeling of chemical-mechanical couplings in solid oxide cells and reliability analysis.
【24h】

Modeling of chemical-mechanical couplings in solid oxide cells and reliability analysis.

机译:固体氧化物电池中化学机械耦合的建模和可靠性分析。

获取原文
获取原文并翻译 | 示例

摘要

Solid oxide fuel cell (SOFC) has been well demonstrated as a promising clean energy conversion technology. The thermal stress effects on SOFC structures have been investigated extensively, however, the chemical stress effects are rarely studied, particularly their effects on the delamination at the cathode/electrolyte interface. The study of such chemical stress is very difficult or even impossible for present experimental techniques, but could be potentially feasible for modeling techniques.;The defect transport process in conducting ceramics and non-stoichiometric conditions are closely related to the multi-physicochemical processes in SOFC devices, so the multi-physicochemical modeling is developed in the first section in both SOFC and SOEC mode. The models are validated with experimental V-I curves and utilized to investigate the performance degradation resulted from oxygen electrode/electrolyte interface delamination in chapter 3. Results indicate that delaminations significantly influence local charge current density distributions since the charge transport path is cutoff. In both parallel flow and counter flow settings, electrolysis performance is more sensitive to the delamination occurred at the center of the cell than those occurred at the edges of the cell.;To better understand the mechanism governing the delamination phenomenon, the chemical stress generated due to the non-uniform oxygen vacancy distribution at the interface is analyzed at Micro scale. The micro model considers the complicated interactions between structural mechanics and ionic transport process through conductive defects. While both the chemical and thermal stresses are complicated at the interface, the chemical stresses show different distribution patterns from the thermal stresses. The results of combined thermal and chemical stresses show that these two kinds of stresses can be partially canceled out with each other, leading to the reduced overall stresses at the cathode/electrolyte interface. The distributions of oxygen partial pressure and thus the oxygen vacancy concentration on the cathode particle surface have significant effects on chemical stress distribution and consequently on the principal stresses at the cathode/electrolyte interface.;For practical SOFC, the defect transport process is closely related to the multi-physicochemical processes, to predict the chemical stress generated in the cell under operating condition, a mathematical model is developed to study oxygen ionic transport induced chemical stress in a cell level in chapter 5. Comprehensive simulations are performed to investigate chemical stress distribution in the PEN assembly under different operating conditions and design parameters as well as mechanical constraints. Principal stress analysis is employed to identify the weakest zones in the cell. The Weibull approach is utilized to analyze failure probability of each components and the elastic energy stored in the cathode layer is employed to evaluate potential delamination failure at cathode/electrolyte interface. For the first time we build a chemical-mechanical coupling model at a cell level and is an important module complementary to the state-of-the-art electrochemical-thermal-mechanical model of SOFCs.;Upon the preceding results, we can conclude that under operating conditions, SOFCs are subjected to hundreds of MPa internal stress, introduced by either thermal mismatch or chemically induced strain. Such high mechanical stress is the major degradation mechanism limiting the industrial development of SOFC. Meanwhile, it can also be a factor for the physical property variation of the conducting ceramics. In chapter 6, we built a continuum model including space charge layers to simulate the charge transportation and interface reaction processes in a polycrystalline mixed ionic and electronic conductor (MIEC). Then, the impedance spectra of a MIEC SDC plate subjected to tensile stress is interpreted by the mathematical model. It indicates that when the MIEC ceramic is suffering from tensile stress, the ionic conductivity of the material will be increased, and the space charge layer will be stretched. The overall resistance of the ceramic maintains constant by the combined effects. The results give further evidence of ionic conductivity enhancement under tensile stress. In addition, as temperature increases, the width increment of the space charge layer is more significant; the ionic mobility growth becomes less apparent. In other words, to be benefited from the mechanical stress, it is better for the polycrystalline MIEC ceramic working under low temperatures. (Abstract shortened by UMI.).
机译:固体氧化物燃料电池(SOFC)已被证明是一种有前途的清洁能源转换技术。对SOFC结构的热应力影响已进行了广泛研究,但是,很少研究化学应力效应,特别是它们对阴极/电解质界面处的分层的影响。这种化学应力的研究对于目前的实验技术来说是非常困难的,甚至是不可能的,但是对于建模技术来说可能是可行的。导电陶瓷中的缺陷传输过程和非化学计量条件与SOFC中的多种物理化学过程密切相关设备,因此在第一部分以SOFC和SOEC模式开发了多种物理化学模型。该模型已通过实验V-I曲线进行了验证,并用于研究第3章中由于氧电极/电解质界面分层而导致的性能下降。结果表明,由于电荷传输路径被切断,因此分层会显着影响局部电荷电流密度分布。在平行流和逆流设置中,电解性能对在电池中心发生的分层比在电池边缘发生的分层更敏感;;为了更好地理解控制分层现象的机理,应注意产生的化学应力在微观尺度上分析了界面处氧空位分布的不均匀性。微观模型考虑了结构力学与通过导电缺陷的离子迁移过程之间的复杂相互作用。尽管化学应力和热应力在界面处都很复杂,但化学应力显示出与热应力不同的分布模式。热应力和化学应力的组合结果表明,这两种应力可以部分相互抵消,从而导致阴极/电解质界面的总应力降低。氧分压的分布以及因此在阴极颗粒表面上的氧空位浓度对化学应力分布有很大影响,因此对阴极/电解质界面的主应力也有重要影响。在第5章中,通过多种物理化学过程预测细胞在工作条件下产生的化学应力,建立了数学模型来研究氧离子运输引起的细胞水平的化学应力。 PEN组件在不同的工作条件和设计参数以及机械约束条件下。主应力分析用于确定单元中最薄弱的区域。威布尔方法用于分析每个组件的失效概率,而阴极层中存储的弹性能则用于评估阴极/电解质界面处的潜在分层失败。我们首次在细胞水平上建立了化学-机械耦合模型,并且是对SOFC的最新电化学-热-机械模型的补充的重要模块。根据以上结果,我们可以得出以下结论:在工作条件下,SOFC承受数百MPa的内部应力,该应力是由热失配或化学诱导的应变引起的。如此高的机械应力是限制SOFC工业发展的主要降解机理。同时,这也可能是导电陶瓷的物理性能变化的因素。在第6章中,我们建立了一个包含空间电荷层的连续模型,以模拟多晶混合离子和电子导体(MIEC)中的电荷传输和界面反应过程。然后,通过数学模型解释承受拉伸应力的MIEC SDC板的阻抗谱。这表明当MIEC陶瓷承受拉伸应力时,材料的离子电导率将增加,并且空间电荷层将被拉伸。结合起来,陶瓷的整体电阻保持恒定。结果提供了在拉伸应力下离子电导率增强的进一步证据。另外,随着温度升高,空间电荷层的宽度增加更加显着。离子迁移率的增长变得不那么明显。换句话说,要受益于机械应力,最好在低温下工作的多晶MIEC陶瓷。 (摘要由UMI缩短。)。

著录项

  • 作者

    Jin, Xinfang.;

  • 作者单位

    University of South Carolina.;

  • 授予单位 University of South Carolina.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 171 p.
  • 总页数 171
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号