首页> 外文学位 >The strong CM lifting problem & the relabelling action on the equicharacteristic universal deformation space of a p-divisible smooth formal groups over Fp .
【24h】

The strong CM lifting problem & the relabelling action on the equicharacteristic universal deformation space of a p-divisible smooth formal groups over Fp .

机译:Fp上p可分的光滑形式群的强CM提升问题和对等特征通用形变空间的重新标记作用。

获取原文
获取原文并翻译 | 示例

摘要

It is known that an abelian variety over a finite field may not admit a lifting to an abelian variety with complex multiplication in characteristic 0. In the first part of the thesis, we study the strong CM lifting problem (sCML): can we kill the obstructions to CM liftings by requiring the whole ring of integers in the CM field act on the abelian variety? We give counterexamples to question (sCML), and prove the answer to question (sCML) is affirmative under the following assumptions on the CM field L: for every place v above p in the maximal totally real subfield L0, either v is inert in L, or v is split in L with absolute ramification index e(v) < p -- 1. The equicharacteristic universal deformation space of a p-divisible smooth formal group over an algebraic closure of Fp is a smooth formal scheme equipped with a naturally defined action by the automorphism group of the formal group via ``changing the label on the closed fiber''. In the second part of the thesis, an algorithm to compute this relabelling action is described, and some asymptotic properties of the action are obtained as the automorphism of the formal group approaches identity.
机译:众所周知,有限域上的阿贝尔变种可能不接受特征为0乘以复数的阿贝尔变种的提升。在论文的第一部分,我们研究了强CM提升问题(sCML):我们可以消除该问题吗?要求CM字段中的整个整数环作用于阿贝尔变种,从而阻碍CM提升?我们给出问题(sCML)的反例,并在以下关于CM字段L的假设下证明问题(sCML)的答案是肯定的:对于最大完全实子字段L0中p之上的每个位置v,L中的v都是惰性的,或v在L中拆分,绝对分枝指数e(v)-1。在Fp的代数闭包上,一个p可分的光滑形式组的等特征通用变形空间是一个配备有自然定义的光滑形式方案形式组的同构组通过``更改封闭纤维上的标签''来采取行动。在论文的第二部分中,描述了一种计算该重新标记动作的算法,并随着形式群的自同构趋于同一性而获得了该动作的一些渐近性质。

著录项

  • 作者

    Jing, Taisong.;

  • 作者单位

    University of Pennsylvania.;

  • 授予单位 University of Pennsylvania.;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 246 p.
  • 总页数 246
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号