首页> 外文学位 >Electrostatic and electrical transport analysis of nanomaterials and numerical methods development.
【24h】

Electrostatic and electrical transport analysis of nanomaterials and numerical methods development.

机译:纳米材料的静电和电迁移分析及数值方法的发展。

获取原文
获取原文并翻译 | 示例

摘要

The nanotechnology today is continuously boosting the application of nanostructured materials in the development and innovation of electronic devices, such as Nano -- Electromechanical Systems (NEMS), electrical transistors, thermoelectric devices, and solar cells. Due to the size miniaturization, quantum mechanical effects play important roles in the performance of such devices. To correctly capture the quantum mechanical effects and understand how these effects influence the electrostatic and electrical transport properties of nanomaterials, efficient and accurate computational models are highly desirable. Currently, the commonly used model for electrostatic analysis of nanoscale devices is based on self -- consistent solution of the effective -- mass Schroedinger equation coupled with the Poisson equation. However, a major drawback of this model is its inefficiency to simulate systems with large Degrees of Freedom (DOFs). To reduce the computational cost, in this thesis, two Component Mode Synthesis (CMS) approaches, namely the fixed -- interface CMS and the free -- interface CMS, are incorporated into the Schroedinger -- Poisson model to speed up the electrostatic analysis in nanostructures. The new model is employed to analyze the quantum electrostatics in both nanowires and FinFETs. Numerical results demonstrate the superior computational performance in terms of efficiency and accuracy.;In addition to the electrostatic analysis, carrier transport in nanostructures with perturbation from quantum effects also merits careful consideration. Among the computational models developed for quantum mechanical carrier transport analysis, the Non -- Equilibrium Green ' s Function (NEGF) coupled with Poisson equation has gained vast application in both ballistic and diffusive transport analysis of nanodevices. In this thesis, the NEGF model is expanded to include mechanical strain and carrier scattering effects. Two important multiphysics systems are investigated in this work. We first study the effect of mechanical strain on the electrical conductivity of Si/Si 1 - x Ge x nanocomposite thin films. The strain effect on the bandstructures of nano -- thin films is modeled by a degenerate two -- band k · p theory. The strain induced bandstructure variation is then incorporated in the NEGF -- Poisson model. The results introduce new perspectives on electrical transport in strained nano -- thin films, which provides useful guidance in the design of flexible electronics. Secondly, nanoporous Si as an efficient thermoelectric material is studied. The Seebeck coefficient and electrical conductivity of nanoporous Si are computed by using the NEGF -- Poisson model with scatterings modeled by Buttiker probes. The phonon thermal conductivity is obtained by using a Boltzmann Transport Equation (BTE) model while the electron thermal conductivity is captured by the Wiedemann -- Franz law. The thermoelectric figure of merit of nanoporous Si is computed for different doping density, porosities, temperature and pore size. An optimal combination of the material design parameters is explored and the result proves that nanoporous Si has better thermoelectric properties than its bulk counterpart.;In the electrical transport analysis of nanomaterials, we found that the standard NEGF -- Poisson model using the Finite Difference (FD) method has a high computational cost, and is inapplicable to devices with irregular geometries. To overcome these difficulties, an accelerated Finite Element Contact Block Reduction (FECBR) method is developed in this thesis. The performance of the accelerated FECBR is evaluated through the simulation of two types of electronic devices: taper -- shaped DG -- MOSFETs and DG -- MOSFETs with Si/SiO 2 interface roughness. Numerical results show that the accelerated FECBR can be applied to model ballistic carrier transport in devices with multiple leads, arbitrary geometry and complex potential profile. The accelerated FECBR significantly improves the flexibility and efficiency of electrical transport analysis of nanomaterials and nanodevices.
机译:当今的纳米技术正在不断促进纳米结构材料在电子设备的开发和创新中的应用,例如纳米机电系统(NEMS),电晶体管,热电设备和太阳能电池。由于尺寸的小型化,量子力学效应在此类器件的性能中起着重要作用。为了正确地捕获量子力学效应并了解这些效应如何影响纳米材料的静电和电传输特性,非常需要高效而准确的计算模型。当前,通常用于纳米级器件静电分析的模型基于有效质量Schroedinger方程和Poisson方程的自洽解。但是,该模型的主要缺点是它无法有效地模拟具有大自由度(DOF)的系统。为了降低计算成本,本文将两种接口模式综合(CMS)方法,即固定接口CMS和自由接口CMS合并到Schroedinger-Poisson模型中,以加快静电分析的速度。纳米结构。该新模型用于分析纳米线和FinFET中的量子静电。数值结果证明了在效率和准确性方面的优越的计算性能。除了静电分析之外,纳米结构中的载流子传输还受到量子效应的扰动,因此也值得仔细考虑。在为量子机械载流子传输分析而开发的计算模型中,结合泊松方程的非平衡格林函数(NEGF)已在纳米器件的弹道和扩散传输分析中得到了广泛的应用。本文将NEGF模型扩展到包括机械应变和载流子散射效应。在这项工作中研究了两个重要的多物理场系统。我们首先研究机械应变对Si / Si 1-x Ge x纳米复合薄膜电导率的影响。用简并两带k·p理论模拟了应变对纳米薄膜能带结构的影响。然后将应变引起的能带结构变化纳入NEGF-泊松模型。研究结果为应变纳米薄膜中的电传输提供了新的观点,为柔性电子设计提供了有用的指导。其次,研究了纳米多孔硅作为一种有效的热电材料。纳米多孔硅的塞贝克系数和电导率是通过使用NEGF-泊松模型和Buttiker探针模拟的散射来计算的。声子热导率是通过使用玻耳兹曼输运方程(BTE)模型获得的,而电子热导率是由Wiedemann-Franz定律捕获的。针对不同的掺杂密度,孔隙率,温度和孔径,计算了纳米多孔硅的热电性能。探索了材料设计参数的最佳组合,结果证明纳米多孔硅的热电性能优于整体硅;在纳米材料的电输运分析中,我们发现使用有限差分法的标准NEGF-泊松模型( FD)方法具有很高的计算成本,不适用于具有不规则几何形状的设备。为了克服这些困难,本文提出了一种加速有限元接触块减少法(FECBR)。通过仿真两种类型的电子设备来评估加速的FECBR的性能:锥形的DG-MOSFET和具有Si / SiO 2界面粗糙度的DG-MOSFET。数值结果表明,加速的FECBR可以用于多引线,任意几何形状和复杂电势分布的设备中的弹道载运模型。加速的FECBR显着提高了纳米材料和纳米器件电迁移分析的灵活性和效率。

著录项

  • 作者

    Li, Hua.;

  • 作者单位

    Clemson University.;

  • 授予单位 Clemson University.;
  • 学科 Nanotechnology.;Materials science.;Theoretical physics.;Nanoscience.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 171 p.
  • 总页数 171
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号