首页> 外文学位 >Nanomaterial based Biosensor Powered by Solar Cell.
【24h】

Nanomaterial based Biosensor Powered by Solar Cell.

机译:由太阳能电池供电的基于纳米材料的生物传感器。

获取原文
获取原文并翻译 | 示例

摘要

Biosensors development using nanomaterials provides promising approaches to offer high performance of sensors in resolution and detection limits. Renewable energy development is attracting interests as an alternative to other sources of energy such as fossil fuels and nuclear energy. Therefore, if biosensor systems can be integrated with nanomaterials and photovoltaics, this biosensor platform can detect various biotargets and support itself by solar energy harvesting with better performance and lower cost. It can reduce cost and pollution from battery or electrical power in a green strategy. It will bridge technological advances in multidiscipline to address fundamental emerging issues in applied science and engineering.;A flexible biosensor based on "bottom up" layer-by-layer self-assembled graphene is investigated. This graphene biosensor can detect different concentrations of biotargets (e.g., glucose, vascular endothelial growth factor, acetylcholine) as a detection platform by measuring the conductance change of the self-assembled graphene. After optimizing of the biosensor structure and dimensions, the suspended graphene sensors are capable of detecting very low concentrations of prostate specific antigen down to 0.4 fg/ml (4x10-16 g/ml), showing a great advantage over conventional testing methods with only 0.4 ng/ml (4x10-10 g/ml) detection limit.;To fabricate solar cell power source, a simple, rapid and robust approach to controllably create nanostructures on a shrink polymer substrate photocathode, demonstrating a 34.1% enhancement of energy conversion efficiency for dye-sensitized solar cells (DSSCs). Glass photoanodes are also replaced with patterned shrink polymer substrates to form the flexible all-polymer DSSCs. A low-cost shrink lithography technique with 21 nm resolution to support the nanostructure fabrication of biosensor and solar cell in a low-cost way. By using this novel lithography technique, a biosensor based on suspended graphene nanoribbon with only 50 nm width was successfully fabricated. This shrinkage strategy was extended to the fabrication of tunable micro/nano structures with very low cost. These shrink induced micro/nano structures are tunable and controllable on the material properties (e.g. conductance, surface wetting ability, surface morphology), which offering more controllable and flexible applications to biochemical detection and energy harvesting with simple and low cost strategy.
机译:使用纳米材料的生物传感器开发提供了有前途的方法,可在分辨率和检测极限方面提供高性能的传感器。可再生能源的发展吸引了人们的兴趣,以替代化石燃料和核能等其他能源。因此,如果生物传感器系统可以与纳米材料和光伏技术集成在一起,则该生物传感器平台可以检测各种生物目标并通过太阳能收集以更好的性能和更低的成本支持自身。它可以通过绿色策略降低成本和电池或电力污染。它将跨越多学科的技术进步,以解决应用科学和工程学中的基本新兴问题。;研究了一种基于“自下而上”的逐层自组装石墨烯的柔性生物传感器。通过测量自组装石墨烯的电导率变化,该石墨烯生物传感器可以检测不同浓度的生物靶标(例如,葡萄糖,血管内皮生长因子,乙酰胆碱)作为检测平台。在优化生物传感器的结构和尺寸之后,悬浮的石墨烯传感器能够检测低至0.4 fg / ml(4x10-16 g / ml)的非常低浓度的前列腺特异性抗原,与仅使用0.4的常规测试方法相比,显示出很大的优势ng / ml(4x10-10 g / ml)的检测极限。;要制造太阳能电池电源,一种简单,快速且耐用的方法可控制地在收缩的聚合物衬底光电阴极上创建纳米结构,证明了34.1%的能量转换效率提高了。染料敏化太阳能电池(DSSC)。玻璃光阳极也被图案化的收缩聚合物基板取代,以形成柔性的全聚合物DSSC。一种具有21 nm分辨率的低成本收缩光刻技术,以低成本方式支持生物传感器和太阳能电池的纳米结构制造。通过使用这种新颖的光刻技术,成功地制造了基于仅50 nm宽度的悬浮石墨烯纳米带的生物传感器。该收缩策略被扩展到以非常低的成本制造可调谐的微/纳米结构。这些收缩诱导的微/纳米结构在材料特性(例如电导率,表面润湿能力,表面形态)上是可调谐和可控的,从而以简单且低成本的策略为生化检测和能量收集提供了更多可控和灵活的应用。

著录项

  • 作者

    Zhang, Bo.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Mechanical engineering.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 148 p.
  • 总页数 148
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号