首页> 外文学位 >Experimental study and modeling of effect of surfactants on liquid loading in vertical pipes.
【24h】

Experimental study and modeling of effect of surfactants on liquid loading in vertical pipes.

机译:表面活性剂对垂直管中液体负荷影响的实验研究和建模。

获取原文
获取原文并翻译 | 示例

摘要

Liquid loading in vertical gas wells with and without surfactant (foam) application is investigated in this study. Critical micelle's concentration, volume of liquid unloaded with time and half-life data are obtained from bench top tests; these are surface tension tests, unloading test and stability tests respectively. Bench top tests were used to infer the optimum concentration of the five surfactants tested namely: anionic, amphoteric I, amphoteric II, sulphonate and cationic surfactants.;The large scale experimental program includes an air-water flow (base case) and an air-water foam flow experiments. Two pipe diameters were considered: 2-in and 4-in. The test facility consists of a storage tank, a mixing section, horizontal inlet line, vertical test pipes with three sections, a return line and two tanks for spent fluid. Pressure gradient and liquid holdup were measured in the middle section of the vertical pipes where the flow is not affected by entry or exit conditions. Visual observation with a high speed camera was used to gain insight into the direction of film fluid flow under annular flow conditions. The direction of the film (upwards or downwards) is an indication of instability (Luo [42]).;Introduction of foam causes the gas velocity at which film reversal occurs to decrease; this shift increases with increasing surfactant concentration and it is more pronounced in 2-in pipe than in 4-in pipe. For both 2-in and 4-in pipes, at superficial gas velocity below 10 m/s, introduction of surfactant lowers the liquid holdup compared to the air-water case, subsequently this results in lower pressure gradient. At superficial gas velocities greater than 10 m/s, the liquid holdup under foam flow in 4-inch pipe is higher than that seen under the air-water case; this is contrary to the observation in 2-in pipe.;In the presence of surfactants, for both 2-in and 4-in pipes, the initiation of liquid loading is delayed. For 2-in pipe, the surfactants reduce the liquid holdup; they also cause an increase in the total pressure loss. A tradeoff is required between the pressure loss the operator is willing to accommodate and the unloading benefit from the use of surfactants. Beyond 10 m/s, pressure drop in 4-inch pipe is lower than that observed in 2-inch pipe; high speed video observation shows that thick roll waves forms on the wall of 2-inch pipe while very thin roll waves form on the wall of 4-inch pipe.;The residual pressure gradient transition criterion of Luo [42] was extended to predict flow regime transition under foam flow. A new transition criterion based on original Barnea [38] transition criterion was developed and successfully used to predict onset of liquid loading under foam flow. Correlations were developed for liquid holdup, foam holdup, fraction of gas trapped in foam and interfacial friction factor under foam flow. These correlations were used in a modified Alves et al. [67] pressure gradient prediction model to predict pressure gradient under foam flow.
机译:在这项研究中,研究了使用和不使用表面活性剂(泡沫)的垂直气井中的液体负荷。临界胶束的浓度,随时间推移的液体卸载量和半衰期数据可从台式测试中获得。它们分别是表面张力测试,卸载测试和稳定性测试。使用台式测试来推断所测试的五种表面活性剂的最佳浓度:阴离子表面活性剂,两性离子I,两性离子II,磺酸盐和阳离子表面活性剂。大型实验程序包括空气-水流(基本情况)和空气-水流。水泡沫流动实验。考虑了两个管道直径:2英寸和4英寸。该测试设备包括一个储罐,一个混合段,水平入口管线,具有三个段的垂直测试管,一个回流管线和两个废液罐。在垂直管道的中间部分测量压力梯度和液体滞留量,该管道的流动不受入口或出口条件的影响。使用高速相机进行视觉观察可深入了解环形流动条件下胶卷流体的流动方向。膜的方向(向上或向下)表示不稳定性(Luo [42])。引入泡沫会导致发生膜反转的气体速度降低;这种变化随表面活性剂浓度的增加而增加,并且在2英寸管道中比在4英寸管道中更为明显。对于2英寸和4英寸管道,在表观气体速度低于10 m / s时,与空气-水情况相比,表面活性剂的引入降低了液体的滞留量,随后导致较低的压力梯度。当表观气体速度大于10 m / s时,在4英寸管中泡沫流动下的液体滞留率高于在空气-水情况下的滞留率。这与在2英寸管道中的观察结果相反。;在存在表面活性剂的情况下,对于2英寸管道和4英寸管道,液体加载的启动都被延迟。对于二合一管道,表面活性剂可减少液体滞留;它们还会导致总压力损失的增加。在操作员愿意承受的压力损失与使用表面活性剂带来的卸载益处之间需要权衡。超过10 m / s时,4英寸管道中的压降低于2英寸管道中的压降;高速视频观察表明,在2英寸管壁上形成厚的滚动波,而在4英寸管壁上形成很薄的滚动波。;罗(42)的残余压力梯度过渡准则被扩展以预测流量泡沫流动下的状态转变。基于原始Barnea [38]转换标准的新转换标准已开发出来,并成功地用于预测泡沫流动下液体载荷的开始。建立了液体滞留,泡沫滞留,泡沫中截留的气体比例以及泡沫流动下的界面摩擦因数的相关性。这些相关性已用于修改后的Alves等人。 [67]压力梯度预测模型可预测泡沫流动下的压力梯度。

著录项

  • 作者

    Ajani, Abdulkamil Ayantayo.;

  • 作者单位

    The University of Tulsa.;

  • 授予单位 The University of Tulsa.;
  • 学科 Petroleum engineering.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 406 p.
  • 总页数 406
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号