首页> 外文会议>ASME joint US-European Fluids Engineering Division summer meeting >Experimental Study of Vertical Gas-Liquid Pipe Flow for Annular and Liquid Loading Conditions using Dual Wire-Mesh Sensors
【24h】

Experimental Study of Vertical Gas-Liquid Pipe Flow for Annular and Liquid Loading Conditions using Dual Wire-Mesh Sensors

机译:双线网传感器在环形和液体加载条件下垂直气液管道流动的实验研究

获取原文

摘要

In gas well production, liquid is produced in two forms, droplets entrained in the gas core and liquid film flowing on the tubing wall. For most of the gas well life cycle, the predominant flow pattern is annular flow. As gas wells mature, the produced gas flow rate reduces decreasing the liquid carrying capability initiating the condition where the liquid film is unstable and flow pattern changes from fully co-current annular flow to partially co-current annular flow. The measurement and visualization of annular flow and liquid loading characteristics is of great importance from a technical point of view for process control or from a theoretical point of view for the improvement and validation of current modeling approaches. In this experimental investigation, a Wire-Mesh technique based on conductance measurements was applied to enhance the understanding of the air-water flow in vertical pipes. The flow test section consisting of a 76 mm ID pipe, 18m long, was employed to generate annular flow and liquid loading at low pressure conditions. A 16×16 wire configuration sensor is used to determine the void fraction within the cross-section of the pipe. Data sets were collected with a sampling frequency of 10,000 Hz. Physical flow parameters were extracted based on processed raw measured data obtained by the sensors using signal processing. In this work, the principle of Wire-Mesh Sensors and the methodology of flow parameter extraction are described. From the obtained raw data, time series of void fraction, mean local void fraction distribution, characteristic frequencies and structure velocities are determined for different liquid and gas superficial velocities that ranged from 0.005 to 0.1 m/s and from 10 to 40 m/s, respectively. In order to investigate dependence of liquid loading phenomenon on viscosity, three different liquid viscosities were used. Results from the Wire-Mesh Sensors are compared with results obtained from previous experimental work using Quick Closing Valves and existing modeling approaches available in the literature.
机译:在气井生产中,液体以两种形式生产,即夹带在气芯中的液滴和在管壁上流动的液膜。在大多数气井生命周期中,主要的流动方式是环形流动。随着气井的成熟,所产生的气体流速减小,从而降低了液体的承载能力,从而开始了液膜不稳定并且流动模式从完全并流的环形流变为部分并流的环形流的状态。从过程控制的技术角度或从理论的角度来看,对于改进和验证当前​​的建模方法,环形流动和液体负载特性的测量和可视化非常重要。在此实验研究中,基于电导测量的线网技术被用于增强对垂直管道中空气-水流的理解。流量测试部分由一条长18m的内径为76毫米的管道组成,用于在低压条件下产生环形流动和液体载荷。使用16×16导线配置传感器确定管道横截面内的空隙率。以10,000 Hz的采样频率收集数据集。基于传感器使用信号处理获得的处理后的原始测量数据来提取物理流量参数。在这项工作中,描述了丝网传感器的原理和流量参数提取的方法。从获得的原始数据中,确定了0.005至0.1 m / s和10至40 m / s范围内的不同液体和气体表面速度的孔隙率时间序列,平均局部孔隙率分布,特征频率和结构速度,分别。为了研究液体加载现象对粘度的依赖性,使用了三种不同的液体粘度。将丝网传感器的结果与使用快速关闭阀和文献中现有的建模方法从先前的实验工作中获得的结果进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号