首页> 外文学位 >Silicon doping profile measurement using terahertz time domain spectroscopy.
【24h】

Silicon doping profile measurement using terahertz time domain spectroscopy.

机译:使用太赫兹时域光谱仪进行硅掺杂轮廓测量。

获取原文
获取原文并翻译 | 示例

摘要

Doping profiles in silicon greatly determine electrical performances of microelectronic devices and are frequently engineered to manipulate device properties. To support engineering studies afterward, essential information is usually required for physically characterized doping profiles.;Secondary ion mass spectrometry (SIMS), spreading resistance profiling (SRP) and electrochemical capacitance voltage (ECV) profiling are mainstream techniques for now to measure doping profiles destructively. SIMS produces a chemical doping profile through the ion sputtering process and owns a better characterization resolution. ECV and SPR, on the other hand, gauge an electrical doping profile from the free carrier detection in microelectronic devices. The major discrepancy between chemical and electrical profiles is at heavily doped (>1020 atoms / cm3) regions. At the profile region over the solubility limit, inactive dopants induce a flat plateau and only being detected by electrical measurements. Destructive techniques are usually designed as stand-alone systems for the remote usage. For an in-situ process control purpose, non-contact approaches, such as non-contact capacitance-voltage (CV) and ellipsometry techniques, are currently under developing.;In this dissertation, novel terahertz time domain spectroscopy (THz-TDS) is adopted to achieve an electrical doping profile measurement in both destructive and non-contact manners. For this brand new application, everything has been studied from bottom-up. Firstly, the measurement uncertainty from the change of a bulk wafer thickness and the recognition of the doping profile dissimilarity were proven experimentally. The phosphorus refractive index from 1.2x10 15 cm-3 to 1.8x1020 cm-3 levels was then generated physically for the modeling of the complex THz transmission and its shift to the Drude Model prediction is explained two scientific mechanisms. Through the experimental demonstrated of the proactical degeneracy, relative strategies were proposed to shrink or break it. The doping profile measurement was finally performed by both methods. We conclude that THz-TDS can be designed as either an either in-situ or stand-alone system to estimate a doping profile in semiconductor materials.
机译:硅中的掺杂分布在很大程度上决定了微电子器件的电性能,并经常被设计用来操纵器件的性能。为了以后支持工程研究,通常需要物理表征掺杂分布的基本信息。;二次离子质谱(SIMS),扩展电阻分布(SRP)和电化学电容电压(ECV)分布是目前用于破坏性地测量掺杂分布的主流技术。 。 SIMS通过离子溅射工艺产生化学掺杂轮廓,并具有更好的表征分辨率。另一方面,ECV和SPR通过微电子设备中的自由载流子检测来测量电掺杂分布。化学和电学曲线之间的主要差异在于重掺杂(> 1020原子/ cm3)区域。在超过溶解度极限的轮廓区域,非活性掺杂剂会导致平台平稳,只能通过电学测量来检测。破坏性技术通常被设计为供远程使用的独立系统。为了实现原位过程控制,目前正在开发非接触方法,例如非接触电容-电压(CV)和椭圆仪技术。;本文研究了新型太赫兹时域光谱仪(THz-TDS)用于以破坏性和非接触方式实现电掺杂分布测量。对于这种全新的应用程序,从下至上进行了所有研究。首先,通过实验证明了由于整体晶片厚度的变化而引起的测量不确定性以及对掺杂轮廓差异的认识。然后从物理上产生了从1.2x10 15 cm-3到1.8x1020 cm-3的磷折射率,用于复杂THz传输的建模,并解释了其向Drude模型预测的转变是两种科学机制。通过对实验性退化的实验证明,提出了缩小或破坏它的相对策略。最终通过两种方法进行掺杂分布测量。我们得出的结论是,可以将THz-TDS设计为原位或独立系统,以估算半导体材料中的掺杂分布。

著录项

  • 作者

    Jen, Chih-Yu.;

  • 作者单位

    Rochester Institute of Technology.;

  • 授予单位 Rochester Institute of Technology.;
  • 学科 Electrical engineering.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 185 p.
  • 总页数 185
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 公共建筑;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号