首页> 外文学位 >First-principles Based Micro-kinetic Modeling for Catalysts Design
【24h】

First-principles Based Micro-kinetic Modeling for Catalysts Design

机译:基于第一原理的催化剂动力学建模

获取原文
获取原文并翻译 | 示例

摘要

Efficient and selective catalysis lies at the heart of many chemical reactions, enabling the synthesis of chemicals and fuels with enormous societal and technological impact. A fundamental understanding of intrinsic catalyst properties for effective manipulation of the reactivity and selectivity of industrial catalysts is essential to select proper catalysts to catalyze the reactions we want and hinder the reactions we do not want.;The progress in density functional theory (DFT) makes it possible to describe interfacial catalytic reactions and predict catalytic activities from one catalyst to another. In this study, water-gas shift reaction (WGSR) was used as a model reaction. First-principles based micro-kinetic modeling has been performed to deeply understand interactions between competing reaction mechanisms, and the relationship with various factors such as catalyst materials, structures, promoters, and interactions between intermediates (e.g., CO self-interaction) that govern the observed catalytic behaviors.;Overall, in this thesis, all relevant reaction mechanisms in the model reaction on well-defined active sites were developed with first-principles calculations. With the established mechanism, the promotional effect of K adatom on Ni(111) on WGSR compared to the competing methanation was understood. Moreover, the WGSR kinetic trend, with the hydrogen production rate decreasing with increasing Ni particle diameters (due to the decreasing fractions of low-coordinated surface Ni site), was reproduced conveniently from micro-kinetic modeling techniques. Empirical correlations such as Bronsted-Evans-Polanyi (BEP) relationship for O-H, and C-O bond formation or cleavage on Ni(111), Ni(100), and Ni(211) were incorporated to accelerate computational analysis and generate trends on other transition metals (e.g., Cu, Au, Pt). To improve the numerical quality of micro-kinetic modeling, later interactions of main surface reaction intermediates were proven to be critical and incorporated successfully into the kinetic models. Finally, evidence of support playing a role in the enhancement of catalyst activity and the impact on future modeling will be discussed.;DFT will be a powerful tool for understanding and even predicting catalyst performance and is shaping our approach to catalysis research. Such molecular-level information obtained from computational methods will undoubtedly guide the design of new catalyst materials with high precision.
机译:高效和选择性催化是许多化学反应的核心,使化学和燃料的合成具有巨大的社会和技术影响。对有效控制工业催化剂的反应性和选择性的内在催化剂性质的基本理解对于选择合适的催化剂来催化我们想要的反应并阻碍我们不需要的反应至关重要。;密度泛函理论(DFT)的发展使得有可能描述界面催化反应并预测从一种催化剂到另一种催化剂的催化活性。在这项研究中,水煤气变换反应(WGSR)被用作模型反应。进行了基于第一原理的微动力学建模,以深刻理解竞争反应机理之间的相互作用,以及与各种因素之间的关系,例如催化剂材料,结构,助催化剂以及控制反应机理的中间体之间的相互作用(例如,CO自相互作用)。总体而言,本文通过第一性原理计算建立了模型反应在定义明确的活性位点上的所有相关反应机理。通过建立的机制,可以理解与竞争甲烷化相比,钾原子对WGSR的Ni(111)的促进作用。此外,WGSR动力学趋势是随着微观动力学建模技术方便地再现的,氢气生成速率随Ni粒径的增加而降低(由于低配位表面Ni部位的分数减少)。结合了经验相关性,例如OH的布朗斯台德-埃文斯-波兰尼(BEP)关系以及Ni(111),Ni(100)和Ni(211)上CO键的形成或裂解,以加速计算分析并在其他转变时产生趋势金属(例如,Cu,Au,Pt)。为了提高微动力学建模的数值质量,主要表面反应中间体的后续相互作用被证明是至关重要的,并成功地纳入了动力学模型。最后,将讨论支持在提高催化剂活性和对未来建模的影响中起作用的证据。DFT将成为了解甚至预测催化剂性能的有力工具,并且正在改变我们的催化研究方法。从计算方法获得的这种分子水平信息无疑将指导高精度的新型催化剂材料的设计。

著录项

  • 作者

    Zhou, Mingxia.;

  • 作者单位

    Kansas State University.;

  • 授予单位 Kansas State University.;
  • 学科 Chemical engineering.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 253 p.
  • 总页数 253
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号