首页> 外文学位 >Atomisti modeling of the microstructure and transport properties of lead-free solder alloys.
【24h】

Atomisti modeling of the microstructure and transport properties of lead-free solder alloys.

机译:无铅焊料合金的微观结构和传输特性的原子模型。

获取原文
获取原文并翻译 | 示例

摘要

Damage mechanics models of lead-free solder joints in nanoelectronics continue to improve, and in doing so begin to utilize quantitative values describing processes at the atomic level, governing phenomena like electromigration and thermomigration. In particular, knowledge of the transport properties of specific microstructures helps continuum level models fully describe these larger-scale damage phenomena via multi-scale analysis. For example, diffusivities for different types of grain boundaries (fast diffusion paths for solvent and solute atoms, and vacancies), and a description of the boundary structure as a function of temperature, are critical in modeling solder microstructure evolution and, consequently, joint behavior under extreme temperature and electric current. Moreover, for damage that develops at larger length scales, surface energies and diffusivities play important roles in characterizing void stability and morphology.;Unfortunately, experiments that investigate these kind of damage phenomena in the atomistic realm are often inconsistent or unable to directly quantify important parameters. One case is the particular transport and structural properties of grain boundaries in Sn (the main component in lead-free solder alloys) and their behavior in the presence of Ag and Cu impurities. This information is crucial in determining accurate diffusivity values for the common SnAgCu (SAC) type solder. Although an average grain boundary diffusivity has been reported for polycrystalline Sn in several works, the value for grain boundary width is estimated and specific diffusivities for boundaries known to occur in Sn have not been reported, to say nothing of solute effects on Sn diffusivity and grain boundary structure. Similarly, transport properties of Sn surfaces remain relatively uninvestigated as well. These gaps and inconsistencies in atomistic data must be remedied for micro- and macro-scale modeling to improve.;As a complement to experimental work and possessing the ability to fill in the gaps, molecular simulation serves to reinforce experimental predictions and provide insight into the atomistic processes that govern studied phenomena. In the present body of work, we employ molecular statics and dynamics simulations in the characterization and computation of betaSn surface energies and surface diffusivities, the determination of diffusivities and structural properties of specific betaSn grain boundaries, and the investigation of Cu and Ag solute effects on betaSn grain boundaries.;In our study of betaSn surfaces, energies for low number Miller index surfaces are computed and the (100) plane is found to have the lowest un-relaxed energy. We then find that two simple hopping mechanisms dominate adatom diffusion transitions on this surface. For each, we determine hopping rates of the adatom and compute its tracer diffusivity.;Our work on grain boundaries investigates the self-diffusion properties and structure of several betaSn symmetric tilt grain boundaries using molecular dynamics simulations. We find that larger diffusive widths are exhibited by higher excess potential energy grain boundaries. Diffusivities in the directions parallel to the interface plane are also computed and activation energies are found with the Arrhenius relation. These are shown to agree well with experimental data.;Finally, we examine the effect that solute atoms of Ag and Cu have on the microstructure of betaSn. Excess energies of the (101) symmetric tilt betaSn grain boundary are computed as a function of solute concentration at the interface, and we show that Ag lowers the energy at a greater rate than Cu. We also quantify segregation enthalpies and critical solute concentrations (where the excess energy of the boundary is reduced to zero). The effect of solute type on shear stress is also examined, and we show that solute has a strong effect on the stabilization of higher energy grain boundaries under shear stress. We then look at the self-diffusivity of Sn in the (101) symmetric tilt betaSn grain boundary and show that adding both Ag or Cu decrease the grain boundary self-diffusivity of Sn as solute amount in the interface increases. Effects of larger concentrations of Cu in particular are also investigated.
机译:纳米电子技术中无铅焊点的损伤力学模型不断改进,并以此开始利用描述原子级过程的定量值来控制电迁移和热迁移等现象。特别是,对特定微结构的传输特性的了解有助于连续水平模型通过多尺度分析充分描述这些较大规模的破坏现象。例如,对于不同类型的晶界的扩散率(溶剂和溶质原子的快速扩散路径以及空位),以及边界结构随温度的变化的描述,对于模拟焊料微观结构的演变以及因此的接头行为至关重要。在极端温度和电流下。此外,对于在更大尺度上发展的损伤,表面能和扩散率在表征空隙稳定性和形态方面起着重要作用。不幸的是,在原子领域研究这类损伤现象的实验常常前后矛盾或无法直接量化重要参数。一种情况是锡(无铅焊料合金中的主要成分)中晶界的特殊传输和结构特性,以及在存在银和铜杂质的情况下其行为。该信息对于确定普通SnAgCu(SAC)型焊料的准确扩散率值至关重要。尽管已经报道了多晶锡的平均晶界扩散率,但已估算出晶界宽度的值,并且尚未报道已知在锡中发生的晶界的比扩散率,更不用说溶质对锡扩散率和晶粒的影响了。边界结构。类似地,Sn表面的传输性质也仍未得到研究。原子数据中的这些差距和矛盾之处必须加以纠正,以改善微观和宏观尺度的模型。作为对实验工作的补充,并具有填补空白的能力,分子模拟可加强实验预测并提供对模型的洞察力。控制研究现象的原子过程。在目前的工作中,我们使用分子静态和动力学模拟来表征和计算betaSn表面能和表面扩散率,确定特定betaSn晶界的扩散率和结构性质,以及研究Cu和Ag的溶质作用betaSn晶界。;在我们对betaSn表面的研究中,计算了低阶Miller指数表面的能量,并且发现(100)平面具有最低的非松弛能。然后,我们发现两个简单的跳跃机制主导了该表面上的原子扩散扩散过渡。对于每种原子,我们确定原子的跳跃率并计算其示踪剂扩散率。我们在晶界上的工作使用分子动力学模拟研究了多个betaSn对称倾斜晶界的自扩散特性和结构。我们发现较高的多余势能晶粒边界表现出较大的扩散宽度。还计算了与界面平面平行的方向的扩散率,并通过阿伦尼乌斯(Arrhenius)关系找到了活化能。这些结果表明与实验数据吻合良好。最后,我们研究了Ag和Cu的溶质原子对βSn的微观结构的影响。计算(101)对称倾斜betaSn晶界的多余能量,作为界面处溶质浓度的函数,我们发现Ag的能量降低速率比Cu高。我们还量化了分离焓和临界溶质浓度(其中边界的多余能量减少到零)。还研究了溶质类型对剪切应力的影响,结果表明,溶质对剪切应力下高能晶界的稳定有很强的影响。然后,我们研究了(101)对称倾斜betaSn晶界中Sn的自扩散性,结果表明,随着界面中溶质含量的增加,同时添加Ag或Cu都会降低Sn的晶界自扩散性。还特别研究了较大浓度的Cu的影响。

著录项

  • 作者

    Sellers, Michael S.;

  • 作者单位

    State University of New York at Buffalo.;

  • 授予单位 State University of New York at Buffalo.;
  • 学科 Engineering Chemical.;Physics Condensed Matter.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 159 p.
  • 总页数 159
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号