首页> 外文学位 >Modeling, optimal kinematics, and flight control of bio-inspired flapping wing micro air vehicles.
【24h】

Modeling, optimal kinematics, and flight control of bio-inspired flapping wing micro air vehicles.

机译:仿生扑翼微型飞机的建模,最佳运动学和飞行控制。

获取原文
获取原文并翻译 | 示例

摘要

Micro air vehicles (MAV) provide an attractive solution for carrying out missions such as searching for survivors inside burning buildings or under collapsed structures, remote sensing of hazardous chemical and radiation leaks and surveillance and reconnaissance. MAVs can be miniature airplanes and helicopters, however, nature has micro air vehicles in the form of insects and hummingbirds, which outperform conventional designs and are therefore, ideal for MAV missions. Hence, there is a need to develop a biomimetic flapping wing micro air vehicle (FWMAV). In this work, theoretical and experimental research is undertaken in order to reverse engineer the complicated design of biological MAVs. Mathematical models of flapping wing kinematics, aerodynamics, thorax musculoskeletal system and flight dynamics were developed and integrated to form a generic model of insect flight. For experimental work, a robotic flapper was developed to mimic insect wing kinematics and aerodynamics. Using a combination of numerical optimization, experiments and theoretical analysis, optimal wing kinematics and thorax dynamics was determined. The analysis shows remarkable features in insect wings which significantly improve aerodynamic performance. Based on this study, tiny flapping mechanisms were developed for FWMAV application. These mechanisms mimic the essential mechanics of the insect thorax. Experimental evaulation of these mechanisms confirmed theoretical findings. The analysis of flight dynamics revealed the true nature of insect flight control which led to the development of controllers for semi-autonomous flight of FWMAV. Overall, this study not only proves the feasibility of biomimetic flapping wing MAV but also proves its advantages over conventional designs. In addition, this work also motivates further research in biological systems.
机译:微型飞行器(MAV)为执行任务提供了一种有吸引力的解决方案,例如在燃烧的建筑物内或倒塌的结构中寻找幸存者,对危险化学物质和辐射泄漏进行遥感以及监视和侦察。 MAV可以是微型飞机和直升机,但是自然界中有昆虫和蜂鸟形式的微型飞行器,其性能优于传统设计,因此非常适合MAV任务。因此,需要开发仿生扑翼微型飞行器(FWMAV)。在这项工作中,进行了理论和实验研究,以便对生物MAV的复杂设计进行逆向工程。拍打翅膀的运动学,空气动力学,胸部肌肉骨骼系统和飞行动力学的数学模型被开发并整合为昆虫飞行的通用模型。为了进行实验,开发了一种机器人挡板来模仿昆虫的翅膀运动学和空气动力学。综合数值优化,实验和理论分析,确定了最佳机翼运动学和胸部动力学。分析表明,昆虫翅膀具有显着特征,可显着改善空气动力学性能。基于这项研究,为FWMAV应用开发了微小的拍打机制。这些机制模仿了昆虫胸部的基本机制。对这些机制的实验评估证实了理论发现。对飞行动力学的分析揭示了昆虫飞行控制的真实本性,从而导致了FWMAV半自动飞行控制器的发展。总的来说,这项研究不仅证明了仿生扑翼MAV的可行性,而且还证明了其优于常规设计的优势。此外,这项工作还激发了对生物系统的进一步研究。

著录项

  • 作者

    Khan, Zaeem.;

  • 作者单位

    University of Delaware.;

  • 授予单位 University of Delaware.;
  • 学科 Engineering Robotics.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 208 p.
  • 总页数 208
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号