首页> 外文学位 >Thermodynamics-based models for the magneto-mechanical response of magnetic shape memory alloys.
【24h】

Thermodynamics-based models for the magneto-mechanical response of magnetic shape memory alloys.

机译:基于热力学的磁性形状记忆合金的磁机械响应模型。

获取原文
获取原文并翻译 | 示例

摘要

Magnetic shape memory alloys (MSMAs) are a relatively new class of smart material that exhibit large recoverable strain (up to 10%) [1] and fast response time (higher than 1 kilohertz) [2]. MSMAs are comprised of martensitic variants arranged as tetragonal unit cells with one short side, denoted by c, and two longer sides, denoted by a. With single crystal MSMAs, these variants align with one of the three Cartesian directions, and the volume fraction of variants with short side aligned in the i-direction is given by &xgr;i. The boundary between two variants, called the twin boundary, moves as one variant volume fraction grows at the expense of the other. Under an applied compressive stress in the i-direction, variants will reorient into the &xgr;i configuration to align the short side of the unit cell with the compressive stress. Each variant has an internal magnetization vector of length Msat that is approximately [3] aligned with the short length of the unit cell in the absence of an external applied magnetic field. This internal magnetization vector tends to align with an externally applied field to minimize the energy in the MSMA. The magnetization vector may align with the external field by: 1) changing internal magnetic domains, 2) rotating magneti- zation vectors away from the easy axis, or 3) variant reorientation . The fraction of the magnetic domains in the &xgr;i variant with easy-axis in the i-direction is denoted by &agr;i, and the domain fraction of the &xgr;i variants with easy axis in the direction opposite to the i-direction is given by (1 - &agr;i). Under an applied field in the i-direction, the &agr;i domain will grow at the expense of the (1 - &agr;i) domain, and vice versa for an applied field in the -i-direction. When the volume fraction &agr;i reaches either 1 or 0, this domain wall motion ceases and the domains are said to be saturated. After domains in &xgr;i have saturated, increasing the magnetic field further may rotate the magnetization vectors in other variants toward this i-direction. The energy required to rotate these magnetization vectors is called the anisotropy energy. Because MSMAs have unusually high anisotropy energy requirements [4, 5], it can become more energetically favorable to reorient variants into &xgr;i and align the magnetic easy axis with the applied magnetic field, rather than to rotate the magnetization vector in the i-direction, toward the hard axis. In this manner, an MSMA can experience the same response to magnetic field as it does to a compressive stress: variant reorientation. As variants reorient, the MSMA will compress in one direction and elongate in another direction, enabling their use as actuators. Additionally, magnetization vectors change direction as they align with the short length of the reorienting variant. As the internal magnetization changes, the MSMA can produce changes in the external magnetic field, which can induce a current within a surrounding coil. Utilizing this can lead to the design of either power harvesters or sensors. This work builds upon that of others, notably that of Kiefer and Lagoudas [6-9], to present several thermodynamic-based continuum models to predict the response of an MSMA to magneto-mechanical loading. The first model is 2D, and allows for any magneto-mechanical loading in two directions. The 2D model includes evolution rules for domain fractions, magnetization vector rotation, and variant reorientation. The next two models are 3D, and include evolution rules for domain wall motion and variant re- orientation. The first 3D model neglects magnetization vector rotation to present a simpler model that is less computationally intensive, while the second 3D model in- cludes all known mechanisms present in the microstructure to give a more generalized and complete model. These models are all more general than any other continuum, thermodynamics-based model in the literature. No other 2D continuum, thermodynamics-based model allows for general 2D magneto-mechanical loading. Furthermore, this 2D model is substantially less empirical than other, as it only includes three model parameters, where other models have five or more [6-10]. A simple method for calibrating these three parameters to easily-obtained experimental results is also presented. With fewer parameters and a more generalized formulation, this model can make reasonable predictions validated by experimental data. The 3D model is also unique, as no other continuum model exists for 3D loading which includes a third variant and magnetization rotation, and is fully derived from thermodynamics.
机译:磁性形状记忆合金(MSMA)是一类相对较新的智能材料,具有大的可恢复应变(高达10%)[1]和快速的响应时间(高于1 kHz)[2]。 MSMA由马氏体变体组成,马氏体变体排列成四边形单元,一个短边用c表示,两个长边用a表示。对于单晶MSMA,这些变体与三个笛卡尔方向之一对齐,而在i方向上对齐的短边变体的体积分数由&xgr; i给出。两个变体之间的边界称为孪生边界,随着一个变体体积分数的增加而移动,而另一者变小。在i方向上施加压缩应力的情况下,变体将重新定向为&xgr;配置,以使晶胞的短边与压缩应力对齐。在没有外部施加磁场的情况下,每个变体都具有长度为Msat的内部磁化矢量,该矢量大约与单位单元的短长度对齐[3]。此内部磁化矢量倾向于与外部施加的磁场对齐,以使MSMA中的能量最小。磁化矢量可以通过以下方式与外部磁场对齐:1)改变内部磁畴,2)旋转磁化矢量远离易轴,或3)变体重新定向。 i方向上具有易轴的&xgr; i变体中的磁畴分数用&agr; i表示,而易轴上的&xgr; i变体中的磁畴分数与i方向相反。由(1-&agr; i)给出。在i方向上的已应用字段下,&igr域将以(1- -i)域为代价增长,反之亦然-i方向上的应用字段反之亦然。当体积分数&i; i达到1或0时,该畴壁运动停止,并且该畴被称为饱和。在x i中的畴饱和之后,增加磁场还可以使其他变体中的磁化矢量朝该i方向旋转。旋转这些磁化矢量所需的能量称为各向异性能。由于MSMA具有非同寻常的高各向异性能要求[4,5],因此将变体重新定向到xi并使易磁化轴与所施加的磁场对齐,而不是旋转i-中的磁化矢量会在能量上更加有利。方向,朝向硬轴。以这种方式,MSMA对磁场的响应与对压应力的响应相同:变体重新定向。随着变体的重新定向,MSMA将在一个方向上压缩并在另一个方向上伸长,从而使其可用作执行器。另外,磁化矢量在与重新定向变量的短长度对齐时会改变方向。随着内部磁化强度的变化,MSMA会在外部磁场中产生变化,从而在周围的线圈中感应出电流。利用这一点可以导致能量收集器或传感器的设计。这项工作是在其他工作的基础上,尤其是在基弗和拉古达斯[6-9]的工作基础上,提出了几种基于热力学的连续模型来预测MSMA对磁机械载荷的响应。第一个模型是2D模型,它允许在两个方向上进行任何磁机械载荷。 2D模型包括磁畴分数,磁化矢量旋转和变体重新定向的演化规则。接下来的两个模型是3D,其中包括域壁运动和变体重新定向的演化规则。第一个3D模型忽略了磁化矢量的旋转,从而提供了一个计算量较少的简单模型,而第二个3D模型则包含了微结构中存在的所有已知机制,从而给出了更为通用和完整的模型。这些模型比文献中任何其他基于热力学的连续统模型都更具通用性。没有其他基于热力学的2D连续体模型可以进行一般的2D磁-机械加载。此外,此2D模型的经验远远不如其他模型,因为它仅包含三个模型参数,而其他模型则具有五个或更多[6-10]。还介绍了将这三个参数校准为易于获得的实验结果的简单方法。通过较少的参数和更通用的公式,该模型可以做出合理的预测,并通过实验数据进行验证。 3D模型也是唯一的,因为不存在用于3D加载的其他连续体模型,该模型包括第三种变体和磁化旋转,并且完全是从热力学得出的。

著录项

  • 作者

    LaMaster, Douglas H.;

  • 作者单位

    Northern Arizona University.;

  • 授予单位 Northern Arizona University.;
  • 学科 Engineering Mechanical.;Engineering Materials Science.
  • 学位 M.S.
  • 年度 2014
  • 页码 75 p.
  • 总页数 75
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 新闻学、新闻事业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号