首页> 外文学位 >Full-Field Experimental Analysis of Ductile and Fatigue Fracture and the Accompanying Thermal Effects
【24h】

Full-Field Experimental Analysis of Ductile and Fatigue Fracture and the Accompanying Thermal Effects

机译:韧性和疲劳断裂及其伴随热效应的全场实验分析

获取原文
获取原文并翻译 | 示例

摘要

This work presents the experimental testing of fatigue and ductile failure for the purposes of computational validation. A precipitation hardening martensitic stainless steel known as 15-5PH is utilized for the experiments in multiple heat treated conditions. Experimental investigations of ductile failure and the accompanying thermal effects are presented with an emphasis on computational model validation in the spirit of the first Sandia Fracture Challenge (SFC). An argument against using isothermal assumptions during model calibration is presented. To further this claim, a FLIR a6753sc infrared detector is utilized to provide full-field temperature measurements on the surface of deforming specimens. In addition, strain fields are measured using digital image correlation (DIC) techniques. Utilizing a modified compact tension (mc(t)) specimen, such as that studied in SFC, and a dogbone geometry for tensile testing, the failure mechanisms are studied. Interesting results show that strain-to-failure in uniaxial testing does not clearly indicate how a mc(t) specimen will fail. The failure strain in mc(t) specimens is correlated with the material hardening rates. Implications of isothermal assumptions become apparent when the hardening rates are compared between isothermal and finite conductivity responses. Fatigue failure is then studied in the same material for the purposes of validating ZFEM, an abaqus-implemented finite element routine studying fatigue fracture paths. Utilizing swiss cheese specimens, unique fracture paths are produced based on the starter notch location. After the nominal swiss cheese geometry is tested, the specimens are slightly modified then locally heated to study the effect of temperature gradients on the fracture paths.
机译:这项工作提出了疲劳和延性破坏的实验测试,以进行计算验证。在多种热处理条件下,将称为15-5PH的沉淀硬化马氏体不锈钢用于实验。提出了延性失效及其伴随的热效应的实验研究,并着重于首次桑迪亚骨折挑战(SFC)精神的计算模型验证。提出了反对在模型校准期间使用等温假设的论点。为了进一步满足这一要求,FLIR a6753sc红外探测器用于在变形样本的表面上提供全场温度测量。此外,使用数字图像相关(DIC)技术测量应变场。利用改进的紧密拉伸(mc(t))标本,例如在SFC中研究的标本,以及用于拉伸测试的dog骨几何形状,研究了破坏机理。有趣的结果表明,单轴测试中的应变失效并不能清楚地表明mc(t)试样将如何失效。 mc(t)试样的破坏应变与材料的硬化速率相关。当在等温和有限电导率响应之间比较硬化速率时,等温假设的含义变得显而易见。然后,在同一材料中研究疲劳破坏,以验证ZFEM,这是一种计算得出的有限元程序,用于研究疲劳断裂路径。利用瑞士奶酪样本,根据起始槽口位置产生独特的断裂路径。在测试了瑞士奶酪的标称几何形状之后,对样品进行轻微修改,然后进行局部加热以研究温度梯度对断裂路径的影响。

著录项

  • 作者

    Huber, Zachary Fries.;

  • 作者单位

    The University of Texas at San Antonio.;

  • 授予单位 The University of Texas at San Antonio.;
  • 学科 Mechanical engineering.;Mechanics.;Materials science.
  • 学位 M.S.
  • 年度 2018
  • 页码 77 p.
  • 总页数 77
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号