首页> 外文学位 >Engineering the Phospholipid Monolayer on Fluorocarbon, Hydrocarbon, and Liquid Crystal Nanodroplets for Applications In Biosensing
【24h】

Engineering the Phospholipid Monolayer on Fluorocarbon, Hydrocarbon, and Liquid Crystal Nanodroplets for Applications In Biosensing

机译:工程化碳氟化合物,碳氢化合物和液晶纳米液滴上的磷脂单分子膜,用于生物传感

获取原文
获取原文并翻译 | 示例

摘要

Nanodroplets (NDs) are liquid-in-liquid dispersions of ∼100-800 nm size range that are often stabilized by a shell of lipids, polymer, proteins, or surfactants. NDs have been explored for a variety of biomedical applications, mostly involving drug formulation and delivery. However, the unique properties of encapsulated liquids, and the effects of interfacial chemistry on these properties, makes NDs potentially powerful candidates for new biosensing technologies. This dissertation explores different oil-in-water or fluorocarbon-in-water ND systems for in-solution sensing of biomarkers as both a platform for diagnostic assays and as a precursor to in vivo biosensing. Nanodroplets, because of their size, provide a large total surface area for analytes, making the assay both sensitive and fast compared to standard assay methods like ELISA. The type of response of the droplet to a stimulus also depends on the internal phase. This work includes NDs with three types of core materials: vegetable oil (fluorescent response), perfluorocarbon (PFC, acoustic response), and a thermotropic liquid crystal (LC, orientational response under polarized light). Each of these ND types is stabilized by a shell consisting of a primary saturated phospholipid and a lipopolymer, where the lipid shell is not only responsible for providing stability over reasonable time scales but also for recognizing analytes and causing a hierarchical change in the internal phase.;The first part of this study examined how ND response to a stimulus changes based on droplet aggregation. This was achieved by functionalizing the lipid monolayer shell of the NDs with aptamers or small molecules capable of specifically associating with dimeric or tetrameric analyte proteins. Through this process, vegetable oil NDs -- doped with either a deactivated dye or an activating agent -- were able to come together in the presence of a specific analyte, undergo content mixing, and generate a unique fluorescent signal. Similarly, PFC NDs were able to generate a higher acoustic response on aggregation. Streptavidin, as a proof-of-concept protein, and vascular endothelial growth factor, as a practical biomarker, were detected using droplet aggregation down to picomolar levels in bulk solution in 15-30 min.;The second part of this study focused on the effects of lipid monolayer phase separation and disruption on ND response. PFC NDs were found to have a heterogeneous monolayer, and acoustic response increased when unsaturated lipids were incorporated into the monolayer. Liquid crystal NDs were observed to transition from radial to bipolar orientations upon increasing the saturated lipid chain length above C16. Disruption of a gel phase C18 monolayer transitioned the orientation from bipolar back to radial. Using these observations for perfluorocarbon and LC droplets, a biologically relevant enzyme, phospholipase A2, was detected down to clinically relevant nanomolar levels in 15-30 min: the enzyme cleaves the lipid molecules in the monolayer and disrupts its organization, generating a higher acoustic contrast for PFC NDs and an alternate orientation for internal phase molecules in LC NDs.;In summary, the current study details the effects of the ND lipid monolayer composition, phase separation, geometry, and functionalization on the internal phase response to stimuli, thus providing a framework for testing the potential of fluorocarbon, hydrocarbon, and liquid crystal nanodroplets as in-solution biosensors.
机译:纳米液滴(NDs)是〜100-800 nm大小范围的液-液分散体,通常由脂质,聚合物,蛋白质或表面活性剂组成的壳来稳定。已针对各种生物医学应用研究了ND,主要涉及药物的配制和递送。但是,封装液体的独特性质以及界面化学对这些性质的影响,使ND成为新生物传感技术的潜在强大候选者。本论文探索了用于生物标记物溶液感测的不同水包油或水碳氟化合物ND系统,作为诊断测定的平台和体内生物感测的前体。纳米液滴由于其大小而为分析物提供了较大的总表面积,与标准测定方法(如ELISA)相比,该测定既灵敏又快速。液滴对刺激的响应类型还取决于内相。这项工作包括具有三种类型核心材料的ND:植物油(荧光响应),全氟化碳(PFC,声学响应)和热致液晶(LC,偏振光下的定向响应)。这些ND类型中的每一种都通过由主要的饱和磷脂和脂聚合物组成的壳来稳定,其中脂壳不仅负责在合理的时间范围内提供稳定性,而且还负责识别分析物并引起内相的层次变化。 ;本研究的第一部分研究了ND对刺激的反应如何基于液滴聚集而变化。这是通过用能够与二聚体或四聚体分析物蛋白特异性结合的适体或小分子官能化ND的脂质单层壳来实现的。通过此过程,掺有失活染料或活化剂的植物油ND能够在存在特定分析物的情况下聚集在一起,进行内容混合,并产生独特的荧光信号。同样,PFC ND在聚集时能够产生更高的声学响应。在15至30分钟内,使用液滴在大体积溶液中凝集至皮摩尔水平,检测到了链霉亲和素(作为概念验证蛋白)和血管内皮生长因子(作为实用的生物标志物)。本研究的第二部分着重于脂质单层相分离和破坏对ND反应的影响。发现PFC ND具有不均一的单层,并且当不饱和脂质掺入单层时,声音响应增加。当将饱和脂质链长度增加到C16以上时,观察到液晶ND从径向取向转变为双极性取向。凝胶相C18单层的破坏使取向从双极转变为径向。使用这些对全氟化碳和LC液滴的观察结果,在15至30分钟内就检测到了与生物有关的酶磷脂酶A2,直至达到临床相关的纳摩尔水平:该酶裂解单层脂质分子并破坏其组织,从而产生更高的声学对比度总的来说,本研究详细介绍了ND脂质单分子层的组成,相分离,几何形状和功能化对内相对刺激的响应的影响,从而提供了一种对PFC NDs和LC NDs内相分子的替代取向的方法。用于测试碳氟化合物,碳氢化合物和液晶纳米液滴作为溶液中生物传感器的潜力的框架。

著录项

  • 作者

    Chattaraj, Rajarshi.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Biomedical engineering.;Materials science.;Chemical engineering.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 162 p.
  • 总页数 162
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号