首页> 外文学位 >Nanowire Based Exchange Coupled Permanent Magnets
【24h】

Nanowire Based Exchange Coupled Permanent Magnets

机译:基于纳米线的交流耦合永磁体

获取原文
获取原文并翻译 | 示例

摘要

Permanent magnets (PMs) are found in many applications such as electrically controlled brake systems, robotics, wind power generators, magnetic bearings, magnetic relays, etc. Performance of these devises strongly depends upon the properties of PMs, whose figure of merit is defined as magnetic energy product (BH)max. The magnetic energy product represents the ability to do work with a unit volume of the PM. The efficiency of PM based devices can be increased by increasing the (BH)max of PMs.;Two possible approaches exist to increase the (BH)max significantly: (1) finding new materials with higher (BH)max and (2) developing an exchange couple PM by coupling a soft phase of high magnetization with a hard phase of high coercivity. Although the idea of exchange coupled PM was proposed 26 years ago, it has not been commercialized yet due to the challenges in the fabrication process. This dissertation focused on addressing some of the challenges. This includes (1) fabrication of soft magnetic material suitable for exchange coupled PMs and (2) low temperature synthesis to reduce the interdiffusion between soft and hard phase of exchange coupled PM.;Soft magnetic material must possess certain features to be suitable for exchange coupled PMs. One such feature is to have high nucleation field (HN). The nucleation field depends upon the size and the volume fraction of the soft phase in the soft/hard composite. Studies have suggested that soft magnetic nanowires inside hard magnetic matrix is an optimum geometry to achieve the highest (BH)max.;We used electrospinning method to fabricate soft magnetic Fe65Co 35 nanowires with ultra-small diameter and high magnetization. The diameter and diameter distribution were controlled by the viscosity and surface tension of electrospinning solutions. Role of surface tension in determining the electrospun nanowire diameter is debatable. We found that surface tension plays a critical role to control diameter distribution for ultra-small (20- 50 nm) magnetic nanowires.;Hard magnetic materials such as NdFeB, L10 FePt, and SmCo5 require high annealing temperatures to develop the hard-magnetic phase. Consequently, one typically needs to treat soft/hard nanocomposites at elevated temperatures to develop hard magnetic phase. This high temperature treatment often induces interdiffusion between hard and soft phases, which significantly deteriorate the PM performance. Interdiffusion can be reduced by decreasing the processing temperature. A recently reported FePt crystals can be transformed into hard magnetic L10 FePt at 400 °C, which is much lower than the traditionally required 600 °C. We used this precursor and electrospun Fe65Co 35 nanowires to develop exchange coupled PM at 400 °C. It is found that, low synthesis temperature indeed reduces the interdiffusion that leads to good magnetic properties of exchange coupled PMs.;Another approach to restrict the interdiffusion is to find chemical processes to couple soft and hard magnetic materials. In collaboration with Prof. Ren at Temple University, we have developed a room temperature solution process method to exchange couple Fe65Co35 nanowires with MnBi. This process uses organic ligand to bridge Fe65Co35 and MnBi. The magnetic properties of the composite show that the solution process method is promising and can also be used to fabricate exchange coupled PMs.
机译:永磁体(PMs)存在于许多应用中,例如电控制动系统,机器人,风力发电机,磁性轴承,磁继电器等。这些装置的性能在很大程度上取决于PMs的特性,其性能因数定义为最大磁能积(BH)磁能积表示以单位体积的PM进行工作的能力。可以通过增加PM的(BH)max来提高基于PM的设备的效率。;存在两种可能的方法来显着提高(BH)max:(1)寻找具有更高(BH)max的新材料和(2)开发通过将高磁化强度的软相与高矫顽力的硬质相耦合来形成交换对PM。尽管交换耦合PM的想法是26年前提出的,但由于制造过程中的挑战,尚未将其商业化。本文的重点是解决一些挑战。这包括(1)制造适用于交换耦合PM的软磁材料,以及(2)低温合成以减少交换耦合PM的软相和硬相之间的相互扩散;;软磁材料必须具有某些特征以适合于交换耦合PM下午一种这样的特征是具有高的成核场(HN)。成核场取决于软/硬复合物中软相的大小和体积分数。研究表明,硬磁基体内的软磁纳米线是实现最大(BH)max的最佳几何形状。我们采用静电纺丝法制备了具有超小直径和高磁化强度的Fe65Co 35纳米软磁线。直径和直径分布由电纺丝溶液的粘度和表面张力控制。表面张力在确定电纺纳米线直径中的作用是有争议的。我们发现表面张力对于控制超小型(20-50 nm)磁性纳米线的直径分布起着关键作用。;硬磁材料(例如NdFeB,L10 FePt和SmCo5)需要较高的退火温度才能形成硬磁相。因此,通常需要在升高的温度下处理软/硬纳米复合材料以形成硬磁相。这种高温处理通常会导致硬相和软相之间的相互扩散,从而显着降低PM性能。可以通过降低处理温度来减少相互扩散。最近报道的FePt晶体可以在400°C的温度下转变为硬磁L10 FePt,这比传统上所需的600°C低得多。我们使用这种前体和静电纺制的Fe65Co 35纳米线在400°C下开发了交换耦合的PM。发现低合成温度确实减少了互扩散,从而导致了交换耦合PM的良好磁性能。另一种限制互扩散的方法是找到化学方法来耦合软磁材料和硬磁材料。与天普大学的任教授合作,我们开发了一种室温溶液处理方法,可以将Fe65Co35纳米线与MnBi交换。此过程使用有机配体桥接Fe65Co35和MnBi。复合材料的磁性能表明固溶处理方法是有前途的,也可用于制造交换耦合的PM。

著录项

  • 作者

    Warsi, Muhammad Asif.;

  • 作者单位

    University of Delaware.;

  • 授予单位 University of Delaware.;
  • 学科 Materials science.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 125 p.
  • 总页数 125
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号