首页> 外文学位 >Variational techniques for cardiac image analysis: Algorithms and applications.
【24h】

Variational techniques for cardiac image analysis: Algorithms and applications.

机译:心脏图像分析的变异技术:算法和应用。

获取原文
获取原文并翻译 | 示例

摘要

In this dissertation we investigate several image segmentation and registration techniques based on the variational formulation for medical imaging applications. The five main research results are summarized below.First, a novel segmentation approach is proposed to jointly delineate the boundaries of epiand endocardium of the left ventricle on Magnetic Resonance Imaging (MRI) under a variational framework using level sets. While most left ventricle segmentation approaches incorporate a shape prior obtained by a training process from an ensemble of examples, we exploit a novel shape constraint using an implicit shape prior knowledge, which assumes shape similarity between epi- and endocardium allowing a variation under the Gaussian distribution.Second, we examine multi-modal data integration with an electroanatomic mapping (EAM) data and MRI images for computer-aided catheter ablation of atrial fibrillation accurately. Specifically, we propose a variational formulation for surface reconstruction and incorporate the prior shape knowledge, which results in a level set method. The proposed method enables simultaneous reconstruction and registration under nonlinear deformation.Third, A fully automated registration method is presented utilizing geometric features from a reliable segmentation of gated myocardial perfusion SPECT (MPS) volumes, where regions of myocardium and blood pools are extracted and used as an anatomical mask to de-emphasize the inhomogeneities of intensity distribution caused by perfusion defects and physiological variations. A multi-resolution approach is employed to represent coarse-to-fine details of both volumes. The extracted voxels from each level are aligned using a similarity measure with a piecewise constant image model and minimized using a gradient descent method. We then perform limited nonlinear registration of gated MPS to adjust for phase differences by automatic cardiac phase matching between CT and MPS. For phase matching, we incorporate nonlinear registration using thin-plate-spline-based warping.Fourth, a nonlinear ultrasound image registration method is proposed using the intensity and the local phase information under a variational framework. One application of this technique is to register two consecutive images in an ultrasound image sequence. Although intensity is the most widely used feature in traditional ultrasound image registration algorithms, speckle noise and lower image resolution make the registration process difficult. By integrating the intensity and the local phase information, we can find and track the nonlinear transformation of each pixel under diffeomorphism between the source and target images.Finally, we develop a fully automatic and accurate nonlinear volume registration for longitudinal Coronary CT angiography (CCTA) scan pairs. The proposed algorithm combines global displacement and local deformation using nonlinear volume co-registration with a volume-preserving constraint. Histogram matching of intensities between two serial scans is performed prior to nonlinear co-registration with dense nonparametric diffeomorphism in which sum of squared difference is used as a similarity measure. The segmented coronary artery trees provide initial anatomical landmarks for the co-registration algorithm that help localize and emphasize the structure of interest. To avoid possible bias caused by incorrect segmentation, we convolve the Gaussian kernel with the segmented binary coronary tree mask and define an extended weighted region of interest. A multi-resolution approach is employed to represent coarse-to-fine details of both volumes. The energy functional is optimized using a gradient descent method.Extensive computer simulations have been conducted and clinical validations have been performed to demonstrated the improved accuracy of the proposed techniques.
机译:在本文中,我们研究了基于变分公式的几种医学图像分割和配准技术。五个主要的研究成果总结如下:首先,提出了一种新的分割方法,以水平集为基础,在变分框架下,通过磁共振成像(MRI)共同描绘左心室上皮和心内膜的边界。虽然大多数左心室分割方法都结合了通过训练过程从示例集合中获得的形状先验,但我们利用隐式形状先验知识开发了一种新颖的形状约束,该知识假定上皮和心内膜之间的形状相似,从而允许在高斯分布下发生变化其次,我们将多模态数据集成与电子解剖图(EAM)数据和MRI图像相结合,以准确地进行计算机辅助导管消融房颤。具体来说,我们提出了一种用于曲面重建的变体公式,并结合了先前的形状知识,从而得出了一种水平集方法。提出的方法能够在非线性变形下同时重建和配准。第三,提出了一种利用门控心肌灌注SPECT(MPS)容积可靠分割的几何特征的全自动配准方法,其中提取了心肌和血池区域并用作解剖掩模,以减少因灌注缺陷和生理变化引起的强度分布不均。采用多分辨率方法来表示两个体积的粗到细细节。使用相似度测度和分段恒定图像模型对从每个级别提取的体素进行对齐,并使用梯度下降法将其最小化。然后,我们执行门控MPS的有限非线性配准,以通过CT和MPS之间的自动心脏相位匹配来调整相位差。对于相位匹配,我们结合了基于薄板样条曲线的非线性配准。第四,提出了在变分框架下利用强度和局部相位信息的非线性超声图像配准方法。该技术的一种应用是在超声图像序列中配准两个连续的图像。尽管强度是传统超声图像配准算法中使用最广泛的功能,但是斑点噪声和较低的图像分辨率使配准过程变得困难。通过整合强度和局部相位信息,我们可以找到并跟踪源图像和目标图像之间在微分变形下每个像素的非线性变换。最后,我们开发了一种用于纵向冠状动脉CT血管造影(CCTA)的全自动且准确的非线性体积配准扫描对。该算法结合非线性位移共配准和体积保持约束,将整体位移和局部变形结合在一起。在使用密集的非参数微分态进行非线性共配准之前,先执行两次连续扫描之间强度的直方图匹配,其中平方差之和用作相似性度量。分割的冠状动脉树为共注册算法提供了初始的解剖学界标,有助于定位和强调感兴趣的结构。为了避免由不正确的分割引起的可能偏差,我们将高斯核与分割后的二叉冠状动脉树掩码进行卷积,并定义了一个扩展的感兴趣加权区域。采用多分辨率方法来表示两个体积的粗到细细节。能量函数使用梯度下降法进行了优化。进行了广泛的计算机模拟,并进行了临床验证,以证明所提出技术的准确性提高。

著录项

  • 作者

    Woo, Jonghye.;

  • 作者单位

    University of Southern California.;

  • 授予单位 University of Southern California.;
  • 学科 Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 152 p.
  • 总页数 152
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号