首页> 外文学位 >Application of Carbon Nanomaterials in Lithium-Ion Battery Electrodes.
【24h】

Application of Carbon Nanomaterials in Lithium-Ion Battery Electrodes.

机译:碳纳米材料在锂离子电池电极中的应用。

获取原文
获取原文并翻译 | 示例

摘要

Carbon nanomaterials such as single-walled carbon nanotubes (SWCNTs) and graphene have emerged as leading additives for high capacity nanocomposite lithium ion battery electrodes due to their ability to improve electrode conductivity, current collection efficiency, and charge/discharge rate for high power applications. In this work, the these nanomaterials have been developed and their properties have been fine-tuned to help solve fundamental issues in conventional lithium ion battery electrodes.;Towards this end, the application of SWCNTs in lithium-ion anodes has been studied. As-grown SWCNTs possess a distribution of physical and electronic structures, and it is of high interest to determine which subpopulations of SWCNTs possess the highest lithiation capacity and to develop processing methods that can enhance the lithiation capacity of underperforming SWCNT species. Towards this end, SWCNT electronic type purity is controlled via density gradient ultracentrifugation, enabling a systematic study of the lithiation of SWCNTs as a function of metal versus semiconducting content. Experimentally, vacuum filtered freestanding films of metallic SWCNTs are found to accommodate lithium with an order of magnitude higher capacity than their semiconducting counterparts. In contrast, SWCNT film densification leads to the enhancement of the lithiation capacity of semiconducting SWCNTs to levels comparable to metallic SWCNTs, which is corroborated by theoretical calculations.;To understand the interaction of the graphene with lithium ions and electrolyte species during electrochemical we use Raman spectroscopy in a model system of monolayer graphene transferred on a Si(111) substrate and density functional theory (DFT) to investigate defect formation as a function of lithiation. This model system enables the early stages of defect formation to be probed in a manner previously not possible with commonly-used reduced graphene oxide or multilayer graphene substrates. Using ex situ and Ar-atmosphere Raman spectroscopy, a rapid increase in graphene defect level is detected for small increments in the number of lithiation/delithiation cycles until the I(D)/I(G) ratio reaches ∼1.5-2.0 and the 2D peak intensity drops by ∼50%, after which the Raman spectra show minimal changes upon further cycling. Using DFT, the interplay between graphene topological defects and chemical functionalization is explored, thus providing insight into the experimental results. In particular, the DFT results show that defects can act as active sites for species that are present in the electrochemical environment such as Li, O, and F. Furthermore, chemical functionalization with these species lowers subsequent defect formation energies, thus accelerating graphene degradation upon cycling. This positive feedback loop continues until the defect concentration reaches a level where lithium diffusion through the graphene can occur in a relatively unimpeded manner, with minimal further degradation upon extended cycling. Overall, this study provides mechanistic insight into graphene defect formation during lithiation, thus informing ongoing efforts to employ graphene in lithium ion battery technology.;Having understood the electrochemical properties of graphene, we have used this to improve the performance of Li-ion cathodes. In particular, Spinel-structured LiMn2O4 (LMO) is a desirable cathode material for Li-ion batteries due to its low cost, thermal stability (safety) and high power capability. However, LMO suffers from a limited cycle life that is triggered by manganese dissolution into the electrolyte during electrochemical cycling. Here, we show that a single sheet of graphene can act effectively as a diffusion barrier for Mn2+ ions, thereby protecting the cathode surface and significantly reducing the dissolution process. Relative to lithium cells containing a sputtered and uncoated thin film LMO 'control' cathode, cells with a graphene-coated LMO cathode provide approximately three times the capacity with significantly superior cycling stability and power. X-ray photoelectron spectroscopy (XPS) depth profiling provides evidence that the graphene coating inhibits manganese depletion from the LMO surface. Furthermore, cross-section transmission electron microscopy (TEM) demonstrates that a stable solid electrolyte interphase (SEI) layer is formed on graphene, which screens the LMO from direct contact with the electrolyte, thereby prolonging the electrode life. Density functional theory (DFT) calculations support the hypothesis of graphene as a diffusion barrier: Defected graphene acts as a barrier for manganese diffusion while allowing the transport of lithium. However, DFT calculations also suggest that the role of graphene goes beyond a physical barrier. The reactive edge of graphene can chemically interact with Mn3+ at the electrode surface, promotes an oxidation state change (Mn3+→Mn4+) and suppresses dissolution and the Jahn-Teller distortion associated with Mn 3.
机译:碳纳米材料(如单壁碳纳米管(SWCNT)和石墨烯)已成为高容量纳米复合锂离子电池电极的主要添加剂,这是因为它们能够提高电极导电性,电流收集效率以及高功率应用的充放电速率。在这项工作中,已经开发了这些纳米材料并对其性能进行了微调,以帮助解决常规锂离子电池电极中的基本问题。为此,研究了SWCNT在锂离子阳极中的应用。生长中的SWCNT具有物理和电子结构的分布,因此,确定哪些SWCNT的亚锂化具有最高的锂化能力并开发可增强性能不佳的SWCNT物种的锂化能力的加工方法具有很高的兴趣。为此,通过密度梯度超速离心来控制SWCNT电子类型的纯度,从而能够系统地研究SWCNT的锂化与金属含量和半导体含量之间的关系。在实验中,发现金属SWCNT的真空过滤自立膜可容纳锂,容量比其半导体对应物高出一个数量级。相比之下,SWCNT薄膜的致密化将使半导体SWCNT的锂化能力提高到与金属SWCNT相当的水平,这在理论计算中得到了证实。在Si(111)衬底上转移的单层石墨烯模型系统中的光谱学和密度泛函理论(DFT),以研究缺陷形成与锂化的关系。该模型系统使缺陷形成的早期阶段能够以以前使用的常用还原型氧化石墨烯或多层石墨烯衬底无法实现的方式进行探测。使用非原位和Ar大气拉曼光谱法,在锂化/脱锂循环次数小幅增加的情况下,检测到石墨烯缺陷水平迅速提高,直到I(D)/ I(G)比率达到约1.5-2.0和2D峰强度下降约50%,此后拉曼光谱显示出在进一步循环时变化很小。使用DFT,探索了石墨烯拓扑缺陷和化学功能化之间的相互作用,从而提供了对实验结果的了解。尤其是DFT结果表明,缺陷可以充当电化学环境中存在的物种(例如Li,O和F)的活性位。此外,用这些物种进行的化学功能化会降低后续的缺陷形成能,从而加速石墨烯的降解。循环。该正反馈循环一直持续到缺陷浓度达到一个水平,在此水平下,锂可以以相对不受阻碍的方式通过石墨烯扩散,并且在延长的循环中不会造成进一步的降解。总体而言,这项研究提供了对锂化过程中石墨烯缺陷形成的机理了解,从而为在石墨烯锂离子电池技术中应用石墨烯做出了不懈的努力。;了解石墨烯的电化学性质后,我们已将其用于改善锂离子阴极的性能。特别地,由于尖晶石结构的LiMn 2 O 4(LMO)的低成本,热稳定性(安全性)和高功率能力,因此是用于锂离子电池的理想阴极材料。然而,LMO遭受有限的循环寿命,这是由于在电化学循环过程中锰溶解到电解质中引起的。在这里,我们表明单片石墨烯可以有效地充当Mn2 +离子的扩散阻挡层,从而保护阴极表面并显着减少溶解过程。相对于包含溅射和未涂覆的薄膜LMO'对照'阴极的锂电池,具有石墨烯涂覆的LMO阴极的电池可提供约三倍的容量,并具有出色的循环稳定性和功率。 X射线光电子能谱(XPS)深度剖析提供了石墨烯涂层抑制LMO表面锰消耗的证据。此外,横截面透射电子显微镜(TEM)证明在石墨烯上形成了稳定的固体电解质中间相(SEI)层,从而屏蔽了LMO与电解质的直接接触,从而延长了电极寿命。密度泛函理论(DFT)的计算支持了石墨烯作为扩散阻挡层的假设:弯曲的石墨烯充当锰扩散的阻挡层,同时允许锂的运输。但是,DFT计算还表明,石墨烯的作用超出了物理障碍。石墨烯的反应边缘可以在电极表面与Mn3 +化学相互作用促进氧化态变化(Mn3 +→Mn4 +)并抑制溶解和与Mn 3相关的Jahn-Teller变形。

著录项

  • 作者

    Jaber-Ansari, Laila.;

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Nanotechnology.;Energy.;Materials science.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 181 p.
  • 总页数 181
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号