首页> 外文学位 >Charge Transfer Dynamics in Complexes of Light-Absorbing CdS Nanorods and Redox Catalysts.
【24h】

Charge Transfer Dynamics in Complexes of Light-Absorbing CdS Nanorods and Redox Catalysts.

机译:吸光CdS纳米棒和氧化还原催化剂配合物中的电荷转移动力学。

获取原文
获取原文并翻译 | 示例

摘要

The use of photoexcited electrons and holes in semiconductor nanocrystals as reduction and oxidation reagents is an intriguing way of harvesting photon energy to drive chemical reactions. This dissertation describes research efforts to understand the photoexcited charge transfer kinetics in complexes of colloidal CdS nanorods coupled with either a water oxidation or reduction catalyst. The first project focuses on the charge transfer interactions between photoexcited CdS nanorods and a mononuclear water oxidation catalyst derived from the [Ru(bpy)(tpy)Cl]+ parent structure. The second project details the electron transfer kinetics in complexes of CdS nanorods coupled with [FeFe]-hydrogenase, which catalyzes H+ reduction. These complexes photochemically produce H2 with quantum yields of up to 20%. Kinetics of electron transfer from CdS nanorods to hydrogenase play a critical role in the overall photochemical reactivity, as the quantum efficiency of electron transfer defines the upper limit on the quantum yield of H 2 generation. Insights from these time-resolved spectroscopic studies are used to discuss the intricate kinetic pathways involved in photochemical H2 generation and the mechanism for electron transfer from photoexcited nanorods to hydrogenase in photocatalytic complexes.
机译:将半导体纳米晶体中的光激发电子和空穴用作还原剂和氧化剂是一种收集光子能量以驱动化学反应的有趣方式。本文介绍了研究工作,以了解胶体CdS纳米棒与水氧化或还原催化剂耦合的复合物中的光激发电荷转移动力学。第一个项目着重于光激发的CdS纳米棒与衍生自[Ru(bpy)(tpy)Cl] +母体结构的单核水氧化催化剂之间的电荷转移相互作用。第二个项目详细介绍了CdS纳米棒与[FeFe]氢化酶偶联的催化H +还原的络合物中的电子转移动力学。这些配合物以光化学方式产生H2,量子产率高达20%。从CdS纳米棒到氢化酶的电子转移动力学在总体光化学反应性中起关键作用,因为电子转移的量子效率定义了H 2生成的量子产率的上限。这些时间分辨光谱研究的见解用于讨论光化学H2生成所涉及的复杂动力学途径以及光催化复合物中电子从光激发纳米棒转移到氢化酶的机理。

著录项

  • 作者

    Wilker, Molly Bea.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Physical chemistry.;Chemistry.;Nanoscience.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 147 p.
  • 总页数 147
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号