首页> 外文学位 >Ranked search on data graphs.
【24h】

Ranked search on data graphs.

机译:在数据图上进行排名搜索。

获取原文
获取原文并翻译 | 示例

摘要

Graph-structured databases are widely prevalent, and the problem of effective search and retrieval from such graphs has been receiving much attention recently. For example, the Web can be naturally viewed as a graph. Likewise, a relational database can be viewed as a graph where tuples are modeled as vertices connected via foreign-key relationships. Keyword search querying has emerged as one of the most effective paradigms for information discovery, especially over HTML documents in the World Wide Web. One of the key advantages of keyword search querying is its simplicity---users do not have to learn a complex query language, and can issue queries without any prior knowledge about the structure of the underlying data.;The purpose of this dissertation was to develop techniques for user-friendly, high quality and efficient searching of graph structured databases. Several ranked search methods on data graphs have been studied in the recent years. Given a top-k keyword search query on a graph and some ranking criteria, a keyword proximity search finds the top-k answers where each answer is a substructure of the graph containing all query keywords, which illustrates the relationship between the keyword present in the graph. We applied keyword proximity search on the web and the page graph of web documents to find top-k answers that satisfy user's information need and increase user satisfaction. Another effective ranking mechanism applied on data graphs is the authority flow based ranking mechanism. Given a top- k keyword search query on a graph, an authority-flow based search finds the top-k answers where each answer is a node in the graph ranked according to its relevance and importance to the query. We developed techniques that improved the authority flow based search on data graphs by creating a framework to explain and reformulate them taking in to consideration user preferences and feedback. We also applied the proposed graph search techniques for Information Discovery over biological databases. Our algorithms were experimentally evaluated for performance and quality. The quality of our method was compared to current approaches by using user surveys.
机译:图结构的数据库是普遍存在的,并且从这样的图进行有效搜索和检索的问题近来受到了广泛的关注。例如,Web可以自然地视为图形。同样,关系数据库可以看作是一个图形,其中元组被建模为通过外键关系连接的顶点。关键字搜索查询已成为信息发现最有效的范例之一,尤其是在万维网上的HTML文档上。关键字搜索查询的主要优点之一是它的简单性-用户不必学习复杂的查询语言,并且可以在不需要任何有关底层数据结构的先验知识的情况下发出查询。开发用于用户友好,高质量和高效搜索图结构数据库的技术。近年来,已经研究了几种在数据图上的排名搜索方法。给定图形上的前k个关键字搜索查询和一些排名标准,关键字邻近搜索会找到前k个答案,其中每个答案都是包含所有查询关键字的图的子结构,这说明了存在于关键字中的关键字之间的关系。图形。我们在网络和网络文档的页面图形上应用了关键字邻近搜索,以找到满足用户信息需求并提高用户满意度的前k个答案。应用于数据图的另一种有效的排名机制是基于权限流的排名机制。给定图上的前k个关键字搜索查询,基于权限流的搜索会找到前k个答案,其中每个答案都是图中根据其与查询的相关性和重要性排序的节点。我们开发了一些技术,通过创建一个框架来解释和重新制定它们,同时考虑到用户的偏好和反馈,从而改进了基于数据图的权限流搜索技术。我们还将提出的图形搜索技术应用于生物数据库上的信息发现。我们对算法进行了性能和质量的实验评估。通过使用用户调查,将我们方法的质量与当前方法进行了比较。

著录项

  • 作者

    Varadarajan, Ramakrishna R.;

  • 作者单位

    Florida International University.;

  • 授予单位 Florida International University.;
  • 学科 Computer Science.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 130 p.
  • 总页数 130
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号