首页> 外文学位 >Computational modeling of lava domes using particle dynamics to investigate the effect of conduit flow mechanics on flow patterns.
【24h】

Computational modeling of lava domes using particle dynamics to investigate the effect of conduit flow mechanics on flow patterns.

机译:利用粒子动力学对熔岩穹顶进行计算建模,以研究导管流动力学对流动模式的影响。

获取原文
获取原文并翻译 | 示例

摘要

Large (1--4 x 106 m3) to major (> 4 x 106 m3) dome collapses for andesitic lava domes such as Soufriere Hills Volcano, Montserrat are observed for elevated magma discharge rates (6--13 m3/s). The gas rich magma pulses lead to pressure build up in the lava dome that result in structural failure of the over steepened canyon-like walls which may lead to rockfall or pyroclastic flow. This indicates that dome collapse intimately related to magma extrusion rate. Variation in magma extrusion rate for open-system magma chambers is observed to follow alternating periods of high and low activity. Periodic behavior of magma exhibits a rich diversity in the nature of its eruptive history due to variation in magma chamber size, total crystal content, linear crystal growth rate and magma replenishment rate. Distinguished patterns of growth were observed at different magma flow rates ranging from endogenous to exogenous dome growth for magma with varying strengths.;Determining the key parameters that control the transition in flow pattern of the magma during its lava dome building eruption is the main focus. This dissertation examines the mechanical effects on the morphology of the evolving lava dome on the extrusion of magma from a central vent using a 2D particle dynamics model. The particle dynamics model is coupled with a conduit flow model that incorporates the kinetics of crystallization and rheological stiffening to investigate important mechanisms during lava dome building eruptions.;Chapter I of this dissertation explores lava dome growth and failure mechanics using a two-dimensional particle-dynamics model. The model follows the evolution of fractured lava, with solidification driven by degassing induced crystallization of magma. The particle-dynamics model emulates the natural development of dome growth and rearrangement of the lava dome which is difficult in mesh-based analyses due to mesh entanglement effects. The deformable talus evolves naturally as a frictional carapace that caps a ductile magma core. Extrusion rate and magma rheology together with crystallization temperature and volatile content govern the distribution of strength in the composite structure. This new model is calibrated against existing observational models of lava dome growth.;Chapter II of this dissertation explores the effects of a spectrum of different rheological regimes, on eruptive style and morphologic evolution of lava domes, using a two-dimensional (2D) particle-dynamics model for a spreading viscoplastic (Bingham) fluid. We assume that the ductile magma core of a 2-D synthetic lava dome develops finite yield strength, and that deformable frictional talus evolves from a carapace that caps the magma core. Our new model is calibrated against an existing analytical model for a spreading viscoplastic lava dome and is further compared against observational data of lava dome growth.;Chapter III of this dissertation explores different lava-dome styles by developing a two-dimensional particle-dynamics model. These growth patterns range from endogenous lava dome growth comprising expansion of a ductile dome core to the exogenous extrusion of a degassed lava plug resulting in generation of a lava spine. We couple conduit flow dynamics with surface growth of the evolving lava dome, fueled by an open-system magma chamber undergoing continuous replenishment. The conduit flow model accounts for the variation in rheology of ascending magma that results from degassing-induced crystallization.;Chapter IV of this dissertation explores the Variation in the extruding lava flow patterns range from endogenous dome growth with a ductile core to the exogenous extrusion of a degassed lava plug that results in the generation of a spine. The variations are a manifestation of the changes in the magma rheology which is governed by magma composition and rate of decompression of the ascending magma. We simulate using a two-dimensional particle-dynamics model, the cyclic behavior of lava dome growth with endogenous growth at high discharge rates followed by exogenous extrusion of rheologically stiffened lava due to degassing induced crystallization at low discharge rates. We couple conduit flow dynamics with surface growth of the evolving lava dome which is fueled by an overpressured reservoir undergoing constant replenishment. The periodic behavior between magma chamber pressure and discharge rate is reproduced as a result of the temporal and spatial change in magma viscosity controlled by crystallization kinetics. Dimensionless numbers are used to map the flow behaviors with the changing extrusion regime. A dimensionless plot identifying the flow transition region during the growth cycle of an evolving lava dome in its lava dome eruptive period is presented. The plot provides a the threshold value of a dimensionless strength parameter (pi 2 < 3.31 x 10-4) below which the transition in flow pattern occurs from endogenously evolving lava dome with a ductile core to the development of a shear lobe for short or long lived periodic episode of the extrusion of magma. (Abstract shortened by UMI.).
机译:观察到安第斯熔岩穹顶(如Soufriere Hills Volcano,蒙特塞拉特)的大型(1--4 x 106 m3)到大型(> 4 x 106 m3)穹顶塌陷,观察到岩浆排放速率提高(6--13 m3 / s)。富含气体的岩浆脉冲导致熔岩穹顶中形成压力,从而导致过陡的峡谷状壁的结构破坏,这可能导致落石或火山碎屑流。这表明穹顶塌陷与岩浆挤出速率密切相关。观察到开放系统岩浆室岩浆挤出速率的变化遵循高活动和低活动的交替周期。由于岩浆室大小,总晶体含量,线性晶体生长速率和岩浆补充速率的变化,岩浆的周期性行为在其喷发历史的性质上表现出丰富的多样性。在具有不同强度的岩浆中,观察到了从内源性到外源性圆顶生长的不同岩浆流速下的可分辨增长模式。;确定控制熔岩穹顶喷发期间岩浆流型转变的关键参数是主要重点。本文利用二维粒子动力学模型,研究了岩浆从中央喷口挤出后对熔岩穹顶形态的力学影响。粒子动力学模型与导管流动模型相结合,该导管模型结合了结晶动力学和流变刚度,研究了熔岩穹顶形成爆发过程中的重要机制。本论文的第一章使用二维粒子探索了熔岩穹顶的生长和破坏机理。动力学模型。该模型遵循裂隙熔岩的演化,并由脱气引起的岩浆结晶驱动凝固。粒子动力学模型模拟了穹顶生长和熔岩穹顶重新排列的自然发展,由于网格缠结效应,在基于网格的分析中很难做到这一点。可变形距骨自然地演变成覆盖延性岩浆核心的摩擦甲壳。挤出速率和岩浆流变性以及结晶温度和挥发物含量决定了复合结构中强度的分布。该新模型已针对现有的熔岩穹顶生长观测模型进行了校准。本论文的第二章使用二维(2D)粒子探索了不同流变形式谱对熔岩穹顶的爆发样式和形态演化的影响。粘塑性(宾厄姆)流体的动力学模型。我们假设2-D合成熔岩穹顶的韧性岩浆岩心发展出有限的屈服强度,而可变形的摩擦距骨则从覆盖岩浆岩心的甲壳演化而来。我们将新模型与现有的扩展的粘塑性熔岩穹顶的分析模型进行了校准,并与熔岩穹顶生长的观测数据进行了进一步的比较。;本论文的第三章通过建立二维粒子动力学模型探索了不同的熔岩穹顶形式。 。这些生长方式从内源性熔岩穹顶增长到延展性穹顶核心扩展,再到脱气的熔岩塞的外生挤压,导致熔岩脊柱的产生。我们将导管流动动力学与不断演变的熔岩穹顶的表面生长结合在一起,并由不断补充水的开放系统岩浆室推动。导管流模型解释了由脱气引起的结晶作用引起的岩浆上升流变学的变化。本论文的第四章探讨了熔岩流的挤出形态的变化,范围从具有延性岩心的内生穹顶生长到外延挤压形成的岩浆。脱气的熔岩塞导致脊柱生成。变化是岩浆流变学变化的体现,岩浆流变学受岩浆成分和上升岩浆减压速率控制。我们使用二维粒子动力学模型进行仿真,熔岩穹顶在高排放速率下随着内生生长而增长的循环行为,然后由于在低排放速率下因脱气而引起的结晶而使流变变硬的熔岩外生挤压。我们将导管流动动力学与不断演变的熔岩穹顶的表面生长结合在一起,而该熔岩穹顶由不断补充压力的超压储层提供动力。由于结晶动力学控制的岩浆粘度的时空变化,再现了岩浆室压力与排放速率之间的周期性行为。无量纲数字用于随变化的挤出状态映射流动行为。提出了一个无量纲的图,该图标识了一个正在演变的熔岩穹顶在其熔岩穹顶爆发期的生长周期内的流动过渡区域。该图提供了无量纲强度参数(pi 2 <3.31 x 10-4)的阈值,在该阈值以下,流动模式发生了从内生的具有延展性岩心的熔岩穹顶向短或长剪切叶发展的过渡。生活在岩浆挤压的周期性发作中。 (摘要由UMI缩短。)。

著录项

  • 作者

    Husain, Taha Murtuza.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Geophysical engineering.;Geophysics.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 151 p.
  • 总页数 151
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号