首页> 外文学位 >Fractal Properties and Applications of Dendritic Filaments in Programmable Metallization Cells.
【24h】

Fractal Properties and Applications of Dendritic Filaments in Programmable Metallization Cells.

机译:可编程金属化单元中树枝状长丝的分形特性和应用。

获取原文
获取原文并翻译 | 示例

摘要

Programmable metallization cell (PMC) technology employs the mechanisms of metal ion transport in solid electrolytes (SE) and electrochemical redox reactions in order to form metallic electrodeposits. When a positive bias is applied to an anode opposite to a cathode, atoms at the anode are oxidized to ions and dissolve into the SE. Under the influence of the electric field, the ions move to the cathode and become reduced to form the electrodeposits. These electrodeposits are filamentary in nature and persistent, and since they are metallic can alter the physical characteristics of the material on which they are formed. PMCs can be used as next generation memories, radio frequency (RF) switches and physical unclonable functions (PUFs).;The morphology of the filaments is impacted by the biasing conditions. Under a relatively high applied electric field, they form as dendritic elements with a low fractal dimension (FD), whereas a low electric field leads to high FD features. Ion depletion effects in the SE due to low ion diffusivity/mobility also influences the morphology by limiting the ion supply into the growing electrodeposit.;Ion transport in SE is due to hopping transitions driven by drift and diffusion force. A physical model of ion hopping with Brownian motion has been proposed, in which the ion transitions are random when time window is larger than characteristic time. The random growth process of filaments in PMC adds entropy to the electrodeposition, which leads to random features in the dendritic patterns. Such patterns has extremely high information capacity due to the fractal nature of the electrodeposits.;In this project, lateral-growth PMCs were fabricated, whose LRS resistance is less than 10O, which can be used as RF switches. Also, an array of radial-growth PMCs was fabricated, on which multiple dendrites, all with different shapes, could be grown simultaneously. Those patterns can be used as secure keys in PUFs and authentication can be performed by optical scanning.;A kinetic Monte Carlo (KMC) model is developed to simulate the ion transportation in SE under electric field. The simulation results matched experimental data well that validated the ion hopping model.
机译:可编程金属化电池(PMC)技术利用固体电解质(SE)中的金属离子传输机制和电化学氧化还原反应来形成金属电沉积。当向与阴极相对的阳极上施加正偏压时,阳极上的原子被氧化成离子并溶解到SE中。在电场的影响下,离子移动到阴极并被还原形成电沉积层。这些电沉积物本质上是丝状且持久的,并且由于它们是金属的,因此可以改变其形成材料的物理特性。 PMC可用作下一代存储器,射频(RF)开关和物理不可克隆功能(PUF)。;细丝的形态会受到偏压条件的影响。在较高的施加电场下,它们形成为具有低分形维数(FD)的树枝状元素,而低电场则导致高FD特性。由于离子扩散性/迁移率低,SE中的离子耗竭效应也会通过限制离子供应到生长的电沉积物中来影响形态。SE中的离子迁移是由于漂移和扩散力驱动的跃迁跃迁引起的。提出了一种具有布朗运动的离子跳跃的物理模型,其中当时间窗大于特征时间时,离子跃迁是随机的。 PMC中细丝的随机生长过程会增加电沉积的熵,从而导致树突状图案具有随机特征。这种图案由于电沉积的分形特性而具有极高的信息容量。;在该项目中,制造了横向生长的PMC,其LRS电阻小于10O,可用作RF开关。而且,制造了一系列径向生长的PMC,可以在其上同时生长具有不同形状的多个树突。这些模式可以用作PUF中的安全密钥,并可以通过光学扫描进行身份验证。;建立了动力学蒙特卡洛(KMC)模型,以模拟电场下SE中的离子迁移。仿真结果与实验数据完全吻合,验证了离子跳跃模型。

著录项

  • 作者

    Yu, Weijie.;

  • 作者单位

    Arizona State University.;

  • 授予单位 Arizona State University.;
  • 学科 Electrical engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 140 p.
  • 总页数 140
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号