首页> 外文学位 >Development of carbon-13 nuclear magnetic resonance methods for studying the structural dynamics of nucleic acids in solution .
【24h】

Development of carbon-13 nuclear magnetic resonance methods for studying the structural dynamics of nucleic acids in solution .

机译:碳13核磁共振方法研究溶液中核酸结构动力学的进展。

获取原文
获取原文并翻译 | 示例

摘要

An understanding of both structure and dynamics is essential to the full characterization of any biomolecule, but is especially relevant with respect to RNA for which dynamics is used in myriad ways to achieve functional complexity that would otherwise be inaccessible based on its rigid framework composed of only four chemically similar nucleotides. Due to experimental difficulties in resolving the plethora of motional modes that exist in RNA, their dynamical properties remain poorly understood. Solution nuclear magnetic resonance (NMR) is one of the most powerful tools for the characterization of structural dynamics, as it provides atomic level detail on a variety of timescales, from picoseconds to seconds. Spin relaxation measurements can in principle provide information at sub-nanosecond timescales, providing that internal motions are not correlated to overall molecular tumbling. Residual dipolar couplings and residual chemical shift anisotropies (RCSAs) report on the average global RNA structure and provide insight into sub-millisecond motions. Finally, chemical exchange measurements can provide quantitative kinetic information on the micro-to-millisecond timescale. Unfortunately, many of the techniques commonly used for studies of RNA are limited to nitrogen resonances, which are not frequently observable in functionally relevant, non-canonical regions of RNA. In addition, target RNAs are relatively small, typically less than 30 nucleotides or 10,000 molecular weight. In this thesis, I develop the much needed NMR methods which can target the carbon nuclei of RNA and in systems up to 150 nucleotides. A combination of new spin relaxation, RCSA, and chemical exchange techniques are developed to probe site specific motions over the picosecond to millisecond time regime and provide important insight into some of the fundamental properties of RNA. Spin relaxation revealed a surprisingly complex dynamical landscape for the relatively simple transactivation response element from HIV-1 RNA where intriguing entropy compensation occurs upon ligand binding in the bulge region, with order parameters of 0.2--0.3, as global domain motions are suppressed. New, selective R1ϱ, dispersion experiments detected previously unobservable chemical exchange in functionally important regions of the bacterial ribosomal A-site RNA, with a timescale of 320 mus, and the modified base in a 1,N6-ethenoadenine - damaged DNA.
机译:对结构和动力学的理解对于任何生物分子的全面表征都是必不可少的,但对于RNA而言尤其重要,因为以多种方式使用动力学来实现功能复杂性,否则基于仅由其组成的刚性框架将无法获得功能复杂性四个化学相似的核苷酸。由于无法解决存在于RNA中的过多运动模式的实验困难,对其动力学特性的了解仍然很少。溶液核磁共振(NMR)是表征结构动力学的最强大工具之一,因为它在从皮秒到秒的各种时间范围内提供了原子级的细节。原则上,自旋弛豫测量可以提供亚纳秒级的信息,前提是内部运动与总体分子翻转无关。残留偶极偶合和残留化学位移各向异性(RCSA)报告了平均全球RNA结构,并提供了对亚毫秒级运动的了解。最后,化学交换测量可以提供微秒至毫秒级的定量动力学信息。不幸的是,通常用于RNA研究的许多技术仅限于氮共振,这在功能相关的非经典RNA区域中经常观察不到。另外,靶RNA相对较小,通常小于30个核苷酸或10,000分子量。在本文中,我开发了迫切需要的NMR方法,该方法可以靶向RNA的碳核,并且可以在多达150个核苷酸的系统中使用。开发了新的自旋弛豫,RCSA和化学交换技术的组合,以探测皮秒至毫秒时间范围内的位点特定运动,并提供对RNA某些基本特性的重要见解。自旋弛豫揭示了来自HIV-1 RNA的相对简单的反式激活应答元件的令人惊讶的复杂动态格局,其中由于在全局域运动受到抑制时,在配体结合时,在凸起区域中发生了有趣的熵补偿,阶跃参数为0.2--0.3。新的选择性R1ϱ分散实验检测到以前在细菌核糖体A位RNA的功能重要区域中观察不到的化学交换,时间范围为320 mus,并且在1,N6-乙炔腺嘌呤损坏的DNA中修饰了碱基。

著录项

  • 作者

    Hansen, Alexandar Louis.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Chemistry Physical.;Biophysics General.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 151 p.
  • 总页数 151
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:38:02

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号