首页> 外文学位 >Engineering Escherichia coli fatty acid metabolism for the production of biofuel precursors.
【24h】

Engineering Escherichia coli fatty acid metabolism for the production of biofuel precursors.

机译:工程大肠杆菌脂肪酸代谢,用于生产生物燃料前体。

获取原文
获取原文并翻译 | 示例

摘要

Medium chain fatty acids (MCFAs, 6-12 carbons) are potential precursors to biofuels with properties similar to gasoline and diesel fuel but are not native products of Escherichia coli fatty acid synthesis. Herein we engineer E. coli to produce, metabolize, and activate MCFAs for their future reduction into alcohols and alkanes (potential biofuels). We develop an E. coli strain with an octanoate (8-carbon MCFA) producing enzyme (a thioesterase), metabolic knockouts, and the capability to inducibly degrade an essential metabolic enzyme that would otherwise divert carbon flux away from octanoate. We show that this strain can produce octanoate at 12% theoretical yield. To determine limitations on octanoate catabolism that could prevent its conversion into an acyl-CoA thioester activated for later reduction into alcohols and alkanes, we evolve E. coli to grow on octanoic acid as sole carbon source. We show that our fastest growing evolved strain contains mutations that enhance the expression of acyl-CoA synthetase FadD. We then directly mutate the fadD gene and screen for mutations that enhance growth rate on octanoic acid. In-vitro assays show that the mutations we identify increase FadD activity on MCFAs. These results, homology modeling, and further mutagenesis lead us to hypothesize that our mutations enhance FadD activity by aiding product exit. This work develops a technique (inducible degradation of an essential metabolic enzyme) and generates fadD mutants that should be useful for the production of medium chain biofuels and other compounds.
机译:中链脂肪酸(MCFA,含6-12个碳)是生物燃料的潜在前体,其性质与汽油和柴油相似,但不是大肠杆菌脂肪酸合成的天然产物。本文中,我们对大肠杆菌进行了工程改造,以生产,代谢和激活MCFA,以将其将来还原为醇和烷烃(潜在的生物燃料)。我们开发了一种具有辛酸(8碳MCFA)产生酶(硫酯酶)的大肠杆菌菌株,具有代谢敲除功能,并具有诱导性降解基本代谢酶的能力,该酶原本可以使碳通量从辛酸中转移出来。我们表明,该菌株可以产生理论值为12%的辛酸酯。为了确定辛酸分解代谢的局限性,以防止其转化为活化的酰基辅酶A硫酯,然后再还原为醇和烷烃,我们开发了大肠杆菌,使其以辛酸作为唯一碳源生长。我们表明,我们增长最快的进化菌株包含增强酰基辅酶A合成酶FadD表达的突变。然后,我们直接突变fadD基因并筛选可提高辛酸生长速率的突变。体外测定表明,我们鉴定出的突变增加了对MCFA的FadD活性。这些结果,同源性建模以及进一步的诱变使我们假设,我们的突变通过协助产物退出而增强了FadD活性。这项工作开发了一种技术(必需的代谢酶的诱导降解),并产生了fadD突变体,该突变体应可用于生产中链生物燃料和其他化合物。

著录项

  • 作者

    Ford, Tyler J.;

  • 作者单位

    Harvard University.;

  • 授予单位 Harvard University.;
  • 学科 Molecular biology.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 125 p.
  • 总页数 125
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号