首页> 外文学位 >The common and distinct contributions of Esco1 and Esco2 to cohesin acetylation and genome stability.
【24h】

The common and distinct contributions of Esco1 and Esco2 to cohesin acetylation and genome stability.

机译:Esco1和Esco2对黏着蛋白乙酰化和基因组稳定性的共同而独特的贡献。

获取原文
获取原文并翻译 | 示例

摘要

During each round of division, the cell must ensure that each daughter cell receives an exact copy of the genome. In order for this to be accomplished, sister chromatids are cohesed until they align along the metaphase plate during mitosis and segregate to opposite poles of the cell. The cohesin complex is responsible for linking sister chromatids after replication has occurred in S phase until their segregation during mitosis. Defects in cohesin can lead to chromosome mis-segregation at anaphase, sensitivity to DNA damage, and human syndromes collectively termed cohesinopathies. For the cohesin complex to effectively link sister chromatids, it must become established, or more stably associated with chromatin. Establishment involves the acetylation of the cohesin subunit Smc3 by the acetyltransferases Escol and Esco2. Through the use of an antibody that specifically detects the acetylated form of Smc3, we describe the timing, localization, and regulation of cohesin acetylation. Acetylated Smc3 localizes to nuclear foci that begin to form in early G1 phase, but maximum acetylation requires replication in S phase. Depletion based studies in HeLa cells suggest that cohesin acetylation depends on the activity of both Escol and Esco2, but their specific contributions are unknown. By constructing conditional knockouts of each acetyltransferase in hTERT-RPE cells, we are able to more clearly define the roles of both Escol and Esco2. Surprisingly, the phenotypes of the two knockouts differ greatly. The Escol knockout displays a milder phenotype, with decreased levels of Smc3 acetylation but normal growth and cohesion. The Esco2 knockout has only a slight reduction in Smc3 acetylation, but these cells exhibit a severe growth phenotype, a sensitivity to replication stress, and defects in mitosis. These results support the model that Escol and Esco2 have non-redundant roles in cellular maintenance and also suggest that Esco2 may have an important function besides Smc3 acetylation.
机译:在每一轮分裂过程中,细胞必须确保每个子细胞都接受基因组的精确拷贝。为了实现这一点,将姐妹染色单体凝聚,直到它们在有丝分裂期间沿着中期板排列并分离到细胞的相对极为止。黏着蛋白复合物负责在S期复制发生后直到姊妹染色单体连接,直到它们在有丝分裂期间分离为止。粘着蛋白的缺陷可能会导致后期染色体错误分离,对DNA损伤的敏感性以及人类综合症(统称为粘膜病)。为了使粘着蛋白复合物有效地连接姐妹染色单体,必须使其牢固或与染色质更稳定地缔合。建立涉及通过乙酰转移酶Escol和Esco2对粘着蛋白亚基Smc3的乙酰化。通过使用特异性检测Smc3乙酰化形式的抗体,我们描述了粘着素乙酰化的时间,定位和调节。乙酰化的Smc3定位于在G1早期阶段开始形成的核灶,但是最大程度的乙酰化需要在S阶段复制。在HeLa细胞中进行的基于耗竭的研究表明,粘着素乙酰化取决于Escol和Esco2的活性,但它们的具体作用尚不清楚。通过构建hTERT-RPE细胞中每个乙酰基转移酶的条件敲除,我们能够更清楚地定义Escol和Esco2的作用。令人惊讶的是,两个基因敲除的表型差异很大。 Escol基因敲除显示出较温和的表型,Smc3乙酰化水平降低,但正常生长和凝聚。 Esco2基因敲除仅使Smc3乙酰化程度略有降低,但是这些细胞表现出严重的生长表型,对复制压力的敏感性以及有丝分裂的缺陷。这些结果支持了Escol和Esco2在细胞维持中具有非冗余作用的模型,也表明Esco2除了Smc3乙酰化以外可能还具有重要功能。

著录项

  • 作者

    Sherwood, Rebecca.;

  • 作者单位

    Weill Medical College of Cornell University.;

  • 授予单位 Weill Medical College of Cornell University.;
  • 学科 Biology Molecular.;Biology General.;Biology Cell.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 153 p.
  • 总页数 153
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号