首页> 外文学位 >Computational Study of Grain Boundaries and Nano-Reactive Materials.
【24h】

Computational Study of Grain Boundaries and Nano-Reactive Materials.

机译:晶界和纳米反应材料的计算研究。

获取原文
获取原文并翻译 | 示例

摘要

The thesis summarized my research efforts in two areas:;Chapters 1 to 4 devote to the computational study of grain boundary (GB) structure, energy and mobilities. Despite of the considerable effort that has been placed on those topics, computational study of GB is still a daunting task. Chapter 1 gives a small glimpse into the rich world of GB studies in the past and the difficulties they met. In chapter 2, we propose a new approach to predicting and organizing interface structures in alloys that takes advantage of a disclination structural units model developed previously for grain boundaries in pure systems. This method is demonstrated using symmetric tilt GB in multiple alloy systems. Chapter 3 studies the GB migration using molecular dynamics simulation (MDS) with two methods: (i) direct simulation of GB motion under synthetic driving force. (ii) Transition path sampling (TPS) method. The two methods predict GB mobility differently. But they are consistent with each other because two GB migration mechanisms present in the first approach but only one mechanism is modeled in the TPS method. A simple and clear way to separate two GB migration mechanisms during the direct simulation is also reported in the chapter 3. Of the two GB migration mechanism, the shear coupled mechanisms has been well studied. In chapter 4, the spotlight is focused on the other GB migration mechanism: GB sliding. Two methods are reported, one uses MDS with nudged elastic band techniques and the other is based on macro-scale linear elasticity theory.;Chapters 5 to 8 summarize the computational study of nano energetic materials (NEMs), or more specifically, nano thermites and nano reactive intermetallic compounds. NEMs have raised substantial scientific and technological interest in recent years for their high reactivity, high energy density, low cost, and non-toxic nature. Chapter 4 provides an overview and information useful for synthesis and characterizations of NEMs. Special concern is given to the thermo analysis (TA) methods of NEMs. Compare to the self-sustaining reaction in NEMs, reactions in TA methods such as differential thermal analysis (DTA) or differential scanning calorimetry (DSC) are much slower. This makes TA a good candidate to unveil the coupled non-equilibrium processes during reactions. However, conventional TA requires a prior knowledge of "model functions" which are empirical approximations (for example, the 1st order reaction) of the overall reactions. In chapter 7, we proposed a better analysis method to study DSC traces of NEMs. This analysis is able to: i) reproduce the DSC curves; ii) predict the peak temperature positions as a function of system sizes and DSC heating rates; iii) explore micro-mechanisms during controlled reactions and provide clean way of retrieving diffusivity parameters. Tested with several experimental datasets and numerical simulations, the new analysis method shows significant improvement over the conventional TA methods. Further, the new TA method predicts that nano energetic particles may work better than nano ferro oxide particles do in hyperthermia cancer treatment (HCT) because of NEMs' capability of releasing heat rapidly. Chapter 8 reviews the past researches of using nano particles in the HCT. In conventional HCT, energy is transferred to cancer cells through alternating magnetic field (AMF). In chapter 8, a nano pillar comprising both ferro oxides and NEMs is proposed. Upon taken the nano pillars will accumulate in cancer cells due to the well-known Enhanced Permeability and Retention (EPR) effect. Ferro oxides can first be heated up through AMF, and then they will initiate the reactions in NEMs which then will kill the cancer cell. Based on our calculation, this design is promising.
机译:论文总结了我在两个方面的研究成果:第一章至第四章致力于晶界(GB)结构,能量和迁移率的计算研究。尽管在这些主题上付出了巨大的努力,但是GB的计算研究仍然是一项艰巨的任务。第1章简要介绍了GB研究的丰富世界及其遇到的困难。在第2章中,我们提出了一种预测和组织合金界面结构的新方法,该方法利用了先前为纯系统中的晶界开发的旋错结构单元模型。在多种合金系统中使用对称倾斜GB证明了该方法。第3章使用分子动力学模拟(MDS)通过两种方法研究GB迁移:(i)在合成驱动力下直接模拟GB运动。 (ii)过渡路径采样(TPS)方法。两种方法对GB迁移率的预测不同。但是它们彼此一致,因为在第一种方法中存在两种GB迁移机制,但在TPS方法中仅建模了一种机制。第3章还介绍了在直接模拟过程中分离两种GB迁移机制的简单明了方法。在两种GB迁移机制中,对剪切耦合机制进行了深入研究。在第4章中,聚焦于其他GB迁移机制:GB滑动。报告了两种方法,一种是将MDS与微动的弹性带技术结合使用,另一种是基于宏观线性弹性理论。;第5至第8章总结了纳米高能材料(NEM)的计算研究,或更具体地讲,是纳米热矿的计算研究。纳米反应性金属间化合物。 NEM由于其高反应性,高能量密度,低成本和无毒性质,近年来引起了广泛的科学技术兴趣。第4章提供了概述和信息,可用于NEM的合成和表征。特别关注NEM的热分析(TA)方法。与NEM中的自我维持反应相比,TA方法(例如差热分析(​​DTA)或差示扫描量热法(DSC))中的反应要慢得多。这使得TA成为揭示反应过程中耦合的非平衡过程的理想人选。然而,常规TA需要“模型函数”的先验知识,所述“模型函数”是全部反应的经验近似值(例如,一阶反应)。在第7章中,我们提出了一种更好的分析方法来研究NEM的DSC痕迹。该分析能够:i)再现DSC曲线; ii)根据系统尺寸和DSC加热速率预测峰值温度位置; iii)探索可控反应过程中的微观机制,并提供清晰的方法来获取扩散系数。经过几个实验数据集和数值模拟的测试,新的分析方法显示出比常规TA方法显着的改进。此外,新的TA方法预测,由于NEM具有快速释放热量的能力,因此纳米高能粒子在热疗癌症治疗(HCT)中可能比纳米氧化铁粒子更有效。第8章回顾了过去在HCT中使用纳米颗粒的研究。在传统的HCT中,能量通过交变磁场(AMF)转移到癌细胞。在第8章中,提出了同时包含铁氧化物和NEMs的纳米柱。由于众所周知的增强的渗透性和保留性(EPR)效应,纳米柱一旦被吸收,就会在癌细胞中积聚。可以先通过AMF加热氧化铁,然后它们将在NEM中引发反应,然后杀死癌细胞。根据我们的计算,这种设计是有希望的。

著录项

  • 作者

    Lu, Shijing.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Materials science.;Nanotechnology.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 173 p.
  • 总页数 173
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号