首页> 外文学位 >Synthesis and Plasmonic Understanding of Core/Satellite and Core Shell Nanostructures.
【24h】

Synthesis and Plasmonic Understanding of Core/Satellite and Core Shell Nanostructures.

机译:核/卫星和核壳纳米结构的合成和等离子理解。

获取原文
获取原文并翻译 | 示例

摘要

Localized surface plasmon resonance, which stems from the collective oscillations of conduction-band electrons, endows Au nanocrystals with unique optical properties. Au nanocrystals possess extremely large scattering/absorption cross-sections and enhanced local electromagnetic field, both of which are synthetically tunable. Moreover, when Au nanocrystals are closely placed or hybridized with semiconductors, the coupling and interaction between the individual components bring about more fascinating phenomena and promising applications, including plasmon-enhanced spectroscopies, solar energy harvesting, and cancer therapy. The continuous development in the field of plasmonics calls for further advancements in the preparation of high-quality plasmonic nanocrystals, the facile construction of hybrid plasmonic nanostructures with desired functionalities, as well as deeper understanding and efficient utilization of the interaction between plasmonic nanocrystals and semiconductor components.;In this thesis, I developed a seed-mediated growth method for producing size-controlled Au nanospheres with high monodispersity and assembled Au nanospheres of different sizes into core/satellite nanostructures for enhancing Raman signals. For investigating the interactions between Au nanocrystals and semiconductors, I first prepared (Au core) (TiO2 shell) nanostructures, and then studied their synthetically controlled plasmonic properties and light-harvesting applications.;Au nanocrystals with spherical shapes are desirable in plasmon-coupled systems owing to their high geometrical symmetry, which facilitates the analysis of electrodynamic responses in a classical electromagnetic framework and the investigation of quantum tunneling and nonlocal effects. I prepared remarkably uniform Au nanospheres with diameters ranging from 20 nm to 220 nm using a simple seed-mediated growth method associated with mild oxidation. Core/satellite nanostructures were assembled out of differently sized Au nanospheres with molecular linkers. The plasmon resonances of the core/satellite nanostructures undergo red shifts in comparison to those of the sole Au cores, which is consistent with Mie theory analysis. As predicted by finite-difference time-domain simulations, the assembled core/satellite nanostructures exhibit large enhancements for Raman scattering. The facile growth of Au nanospheres and assembly of core/satellite nanostructures blaze a new way to the design of nanoarchitectures with desired plasmonic properties and functions.;Coating semiconductors onto Au nanocrystals to form core shell configurations can increase the interactions between the two materials, benefiting from their large active interfacial area. The shell can also protect the Au nanocrystal core from aggregation, reshaping, and chemical corrosion. In this thesis, (Au nanocrystal core) (titania shell) nanostructures with tunable shell thicknesses were prepared by a facile wetchemistry method. Au nanocrystals with strong and tunable plasmon resonances in the visible and near-infrared regions can enhance and broaden the light utilization of TiO2 through the scattering/absorption enhancement, sensitization, and hot-electron injection. The integration of Au nanocrystals therefore hold the prospect of breaking the light-harvesting limit of TiO2 arising from its wide band gap. The resultant (Au core) (TiO2 shell) nanostructures were examined to be capable of efficiently generating reactive oxygen species under near-infrared resonant excitation.;On the other hand, the transverse plasmon modes of Au nanorods, which are often too weak to be observed on scattering spectra, are enhanced by the TiO2 shell through energy transfer. With the increment of the shell thickness, the intensity of the transverse plasmon mode increases significantly and even becomes comparable with the longitudinal plasmon mode. Interestingly, both the transverse and longitudinal modes of the (Au core) (TiO2 shell) nanostructures exhibit asymmetric Fano line shapes. The Fano resonances result from the coupling between the core and shell, as understood by the mechanical oscillator model. Besides varying the shell thickness, the plasmonic bands of the core shell nanostructures can also be tailored by employing Au nanorods with different aspect ratios. The synthetically tunable plasmonic properties and synergistic interactions between the gold core and the titania shell make the hybrid nanostructure a multifunctional nanomaterial and ideal system for studying the plasmonic hybrid nanostructures.
机译:源于导带电子的集体振动的局部表面等离子体激元共振赋予Au纳米晶体独特的光学性能。金纳米晶体具有极大的散射/吸收截面和增强的局部电磁场,这两者都是可合成调整的。此外,当金纳米晶体紧密放置或与半导体混合时,各个组件之间的耦合和相互作用会带来更令人着迷的现象和有希望的应用,包括等离激元增强光谱学,太阳能收集和癌症治疗。等离子体领域的不断发展要求在制备高质量等离子体纳米晶体,方便地构建具有所需功能的混合等离子体纳米结构以及对等离子体纳米晶体与半导体组件之间相互作用的深入理解和有效利用方面取得进一步进展在本文中,我开发了一种种子介导的生长方法,用于生产具有高单分散性的尺寸受控的Au纳米球,并将不同尺寸的Au纳米球组装成核/卫星纳米结构,以增强拉曼信号。为了研究Au纳米晶体与半导体之间的相互作用,我首先制备了(Au核)(TiO2壳)纳米结构,然后研究了它们的合成控制的等离激元性质和光收集应用。;球形的Au纳米晶体在等离激元耦合系统中是理想的由于它们的高几何对称性,这有助于在经典电磁框架中分析电动力响应,并有助于研究量子隧穿和非局部效应。我使用与轻度氧化相关的简单种子介导的生长方法,制备了直径范围从20 nm至220 nm的非常均匀的Au纳米球。核心/卫星纳米结构由具有分子接头的不同尺寸的Au纳米球组装而成。与唯一的Au核相比,核/卫星纳米结构的等离激元共振经历红移,这与Mie理论分析是一致的。如有限差分时域模拟所预测的,组装的核/卫星纳米结构对拉曼散射表现出很大的增强作用。金纳米球的快速生长和核/卫星纳米结构的组装为设计具有所需等离子体特性和功能的纳米结构开辟了新途径。将半导体涂覆到金纳米晶体上形成核壳结构可以增加两种材料之间的相互作用,从而受益从其较大的活动界面区域开始。壳还可以保护Au纳米晶核免于聚集,重塑和化学腐蚀。本文采用简便的湿化学方法制备了具有可调壳厚度的(金纳米晶核)(二氧化钛壳)纳米结构。在可见光和近红外区域具有强且可调谐的等离振子共振的金纳米晶体可通过散射/吸收增强,敏化和热电子注入来增强和拓宽TiO2的光利用率。因此,金纳米晶体的集成具有突破由其宽带隙引起的TiO 2的光收集极限的前景。研究了所得的(Au核)(TiO2壳)纳米结构能够在近红外共振激发下有效产生活性氧物种;另一方面,Au纳米棒的横向等离振子模式通常太弱而不能被在TiO2壳层通过能量转移增强了在散射光谱上观察到的结果。随着壳厚度的增加,横向等离子体激元模式的强度显着增加,甚至与纵向等离子体激元模式相当。有趣的是,(Au核)(TiO2壳)纳米结构的横向和纵向模态均显示出不对称的Fano线形。机械振荡器模型可以理解,法诺共振是由核与壳之间的耦合引起的。除了改变壳厚度之外,还可以通过使用具有不同长宽比的Au纳米棒来定制核壳纳米结构的等离激元带。合成可调的等离激元性质以及金核和二氧化钛壳之间的协同相互作用使杂化纳米结构成为多功能纳米材料,是研究等离激元杂化纳米结构的理想系统。

著录项

  • 作者

    Ruan, Qifeng.;

  • 作者单位

    The Chinese University of Hong Kong (Hong Kong).;

  • 授予单位 The Chinese University of Hong Kong (Hong Kong).;
  • 学科 Nanotechnology.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 168 p.
  • 总页数 168
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号