首页> 外文会议>Conference on nanophotonic materials >Aluminum and Copper Plasmonics for Enhancing Internal Quantum Efficiency of Core-Shell and Core-Multishell Nanowire Photoelectrodes
【24h】

Aluminum and Copper Plasmonics for Enhancing Internal Quantum Efficiency of Core-Shell and Core-Multishell Nanowire Photoelectrodes

机译:铝和铜等离子增强核壳和核-多壳纳米线光电电极的内部量子效率

获取原文

摘要

One of the critical challenges for achieving solar-to-hydrogen efficiency greater than 10% (100 W/m~2), especially in metal oxide photoelectrodes, is the poor internal quantum efficiency arising from high, bulk and surface, recombination and insufficient light absorption. Plasmonic light harvesting has emerged as a promising strategy to address this challenge. However, most designs are photocatalyst specific and employ precious metals, making large scale applications infeasible. We present metal-photocatalyst core-shell and semiconductor-metal-photocatalyst core-multishell nanowires as a novel class of multi-functional plasmonic photoelectrodes. By combining the optical resonances with the localized surface plasmon resonance within the proposed structures, we achieve extreme light absorption in the visible range within ultrathin photocatalyst layers. Such enhanced absorption ensures that the photo-charges are preferentially generated very close to the photocatalyst-electrolyte interface and can effectively drive the reaction forward, thereby improving the internal quantum efficiency. Specifically, for nanowires in an aqueous electrolyte, we demonstrate the effectiveness of aluminum and copper to confine light and establish them as plasmonic alternatives to precious metal counterparts such as silver and gold therefore enabling cheap and scalable plasmonics. Further, we probe the absorption as a function of the permittivity of the electrolyte and show that the absorption in such nanowires is large even for high permittivity electrolytes. Hematite and copper(Ⅰ) oxide have been chosen as the test materials to validate the generality of this approach. Notably, for hematite, we show that aluminum is more effective than copper, while for a broadband absorber such as copper(Ⅰ) oxide, we show that both aluminum and copper are equally effective for plasmonic light harvesting.
机译:实现高于10%(100 W / m〜2)的氢能效率的关键挑战之一,特别是在金属氧化物光电极中,是由于高,大体积和高表面,复合和光不足导致的内部量子效率差。吸收。等离子光收集已成为解决这一挑战的有前途的策略。但是,大多数设计都是光催化剂特有的,并使用贵金属,因此大规模应用是不可行的。我们提出金属-光催化剂的核壳和半导体-金属-光催化剂的核-多壳纳米线作为一类新型的多功能等离激元光电极。通过将光学共振与拟议结构内的局部表面等离子体激元共振相结合,我们在超薄光催化剂层内的可见光范围内实现了极高的光吸收。这种增强的吸收确保了优先在非常接近光催化剂-电解质界面的位置优先产生光电荷,并且可以有效地推动反应向前推进,从而提高了内部量子效率。具体来说,对于水性电解质中的纳米线,我们证明了铝和铜限制光的有效性,并将它们确立为银和金等贵金属对应物的等离子替代物,从而实现了廉价且可扩展的等离子。此外,我们探究了吸收率随电解质介电常数的变化,并表明即使对于高介电常数电解质,这种纳米线中的吸收也很大。选择赤铁矿和氧化铜(Ⅰ)作为测试材料以验证该方法的普遍性。值得注意的是,对于赤铁矿,我们表明铝比铜更有效,而对于宽带吸收剂,例如氧化铜(Ⅰ),我们表明铝和铜对于等离激元光的收集同样有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号