...
首页> 外文期刊>Nano letters >Aluminum Plasmonics for Enhanced Visible Light Absorption and High Efficiency Water Splitting in Core?Multishell Nanowire Photoelectrodes with Ultrathin Hematite Shells
【24h】

Aluminum Plasmonics for Enhanced Visible Light Absorption and High Efficiency Water Splitting in Core?Multishell Nanowire Photoelectrodes with Ultrathin Hematite Shells

机译:铝等离子增强了超薄赤铁矿壳的核壳多线纳米线光电电极中的可见光吸收和高效水分解

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The poor internal quantum efficiency (IQE) arising from high recombination and insufficient absorption is one of the critical challenges toward achieving high efficiency water splitting in hematite (α-Fe_2O_3) photoelectrodes. By combining the nanowire (NW) geometry with the localized surface plasmon resonance (LSPR) in semiconductor?metal?metal oxide core?multishell (CMS) NWs, we theoretically demonstrate an effective route to strongly improve absorption within ultrathin (sub-50 nm) hematite layers. We show that Si?Al?Fe_2O_3 CMS NWs exhibit photocurrent densities comparable to Si?Ag?Fe_2O_3 CMS and outperform Fe_2O_3, Si?Fe_2O_3 CS and Si?Au?Fe_2O_3 CMS NWs. Specifically; Si?Al?Fe_2O_3 CMS NWs reach photocurrent densities of ~11.81 mA/cm~2 within a 40 nm thick hematite shell which corresponding to a solar to hydrogen (STH) efficiency of 14.5%. This corresponds to about 93% of the theoretical maximum for bulk hematite. Therefore, we establish Al as an excellent alternative plasmonic material compared to precious metals in CMS structures. Further, the absorbed photon flux is close to the NW surface in the CMS NWs, which ensures the charges generated can reach the reaction site with minimal recombining. Although the NW geometry is anisotropic, the CMS NWs exhibit polarization independent absorption over a large range of incidence angles. Finally, we show that Si?Al?Fe_2O_3 CMS NWs demonstrate photocurrent densities greater than ~8.2 mA/cm~2 (STH efficiency of 10%) for incidence angles as large as 45°. These theoretical results strongly establish the effectiveness of the Al-based CMS NWs for achieving scalable and cost-effective photoelectrodes with improved IQE, enabling a novel route toward high efficiency water splitting.
机译:高重组和吸收不足引起的不良内部量子效率(IQE)是在赤铁矿(α-Fe_2O_3)光电极中实现高效水分解的关键挑战之一。通过将纳米线(NW)的几何形状与半导体?金属?金属氧化物核?多壳(CMS)NW中的局部表面等离振子共振(LSPR)相结合,我们从理论上证明了有效改善超薄(50 nm以下)吸收的有效途径。赤铁矿层。我们表明,Si?Al?Fe_2O_3 CMS NWs的光电流密度与Si?Ag?Fe_2O_3 CMS相当,并且胜过Fe_2O_3,Si?Fe_2O_3 CS和Si?Au?Fe_2O_3 CMS NW。特别; Si?Al?Fe_2O_3 CMS NWs在40 nm厚的赤铁矿壳内达到〜11.81 mA / cm〜2的光电流密度,对应于太阳能到氢气(STH)效率为14.5%。这大约相当于块状赤铁矿理论最大值的93%。因此,与CMS结构中的贵金属相比,我们将Al建立为极好的替代等离子体材料。此外,吸收的光子通量接近CMS NW中的NW表面,这确保了生成的电荷可以最少的重组到达反应部位。尽管NW的几何形状是各向异性的,但CMS NW却在大入射角范围内表现出与偏振无关的吸收。最后,我们证明了Si?Al?Fe_2O_3 CMS NWs在入射角大至45°时显示出的光电流密度大于〜8.2 mA / cm〜2(STH效率为10%)。这些理论结果有力地证明了基于铝的CMS NW在实现具有改进的IQE的可扩展且具有成本效益的光电极方面的有效性,从而为实现高效水分解提供了一条新途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号