首页> 外文学位 >Tailoring Optical and Plasmon Resonances in Core-Shell and Core-Multishell Nanowires.
【24h】

Tailoring Optical and Plasmon Resonances in Core-Shell and Core-Multishell Nanowires.

机译:调整核-壳和核-多壳纳米线中的光学和等离子体共振。

获取原文
获取原文并翻译 | 示例

摘要

Semiconductor nanowires (NWs) are sub-wavelength structures which exhibit strong optical (Mie) resonances in the visible range. In addition to such optical resonances, the localized surface plasmon resonances (LSPR) in metal and semiconductor (or dielectric) based core-shell (CS) and core-multishell (CMS) NWs can be tailored to achieve novel negative-index metamaterials (NIM), extreme absorbers, invisibility cloaks and sensors. Particularly, in this dissertation, the versatility of CS and CMS NWs for the design of negative-index metamaterials in the visible range and, plasmonic light harvesting in ultrathin photocatalyst layers for water splitting are studied.;Utilizing the LSPR in the metal layer and the magnetic dipole resonance in the semiconductor shell under traverse electric (TE) polarization, semiconductor-metal-semiconductor CMS NWs can be designed to exhibit spectrally overlapping electric and magnetic resonances in the visible range. NWs exhibiting such double resonances can be considered as meta-atoms and arrayed to form polarization dependant, low-loss NIM.;Alternatively, by tuning the LSPR in the TE polarization and the optical resonance in the transverse magnetic (TM) polarization of metal-photocatalyst CS and semiconductor-metal-photocatalyst CMS NWs, the absorption within ultrathin (sub-50 nm) photocatalyst layers can be substantially enhanced. Notably, aluminum and copper based NWs provide absorption enhancement remarkably close to silver and gold based NWs respectively. Further, such absorption is polarization independent and remains high over a large range of incidence angles and permittivity of the medium.;Due to the tunability of their optical properties, CS and CMS NWs, are expected to be vital components for the design of nanophotonic devices. An outlook has been presented highlighting some of the potential applications of such nanowires beyond negetive-index metamaterials and extreme absorption.
机译:半导体纳米线(NWs)是亚波长结构,在可见光范围内表现出很强的光学(Mie)共振。除了这种光学共振,还可以对基于金属和半导体(或电介质)的核壳(CS)和核多壳(CMS)NW中的局部表面等离子体共振(LSPR)进行定制,以实现新型的负折射率超材料(NIM) ),极度吸收体,隐形斗篷和传感器。特别是,本文研究了CS和CMS NWs在可见光范围内设计负折射率超材料的多功能性,并研究了超薄光催化剂层中的等离激元光收集以进行水分解。在横向电(TE)极化下,半导体外壳中的磁偶极子共振,可以将半导体-金属半导体CMS NW设计为在可见光范围内表现出光谱重叠的电子和磁共振。表现出这种双重共振的NW可以视为亚原子,并排列成偏振相关的低损耗NIM。或者,通过调整TE极化中的LSPR和金属的横向磁(TM)极化中的光学共振,在光催化剂CS和半导体金属光催化剂CMS NW中,超薄(低于50 nm)光催化剂层内的吸收可以大大提高。值得注意的是,铝和铜基NW分别提供明显接近银和金基NW的吸收增强。此外,这种吸收是偏振无关的,并且在介质的大入射角和介电常数的大范围内仍然很高。;由于其光学性质的可调性,CS和CMS NW被认为是纳米光子器件设计的重要组成部分。 。提出了一种前景,突出了这种纳米线在食指超材料和极限吸收以外的一些潜在应用。

著录项

  • 作者

    Ramadurgam, Sarath.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Physics.;Nanoscience.;Optics.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 112 p.
  • 总页数 112
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号