首页> 外文学位 >Numerical simulation and modeling of combustion in scramjets.
【24h】

Numerical simulation and modeling of combustion in scramjets.

机译:超燃冲压发动机燃烧的数值模拟和建模。

获取原文
获取原文并翻译 | 示例

摘要

In the last fifteen years the development of a viable scramjet has quickly approached the following long term goals: responsive sub-orbital space access; long-range, prompt global strike; and high-speed transportation. Nonetheless, there are significant challenges that need to be resolved. These challenges include high skin friction drag and high heat transfer rates, inherent to vehicles in sustained, hypersonic flight. Another challenge is sustaining combustion. Numerical simulation and modeling was performed to provide insight into reducing skin friction drag and sustaining combustion.;Numerical simulation was used to investigate boundary layer combustion, which has been shown to reduce skin friction drag. The objective of the numerical simulations was to quantify the effect of fuel injection parameters on boundary layer combustion and ultimately on the change in the skin friction coefficient and heat transfer rate. A qualitative analysis of the results suggest that the reduction in the skin friction coefficient depends on multiple parameters and potentially an interaction between parameters.;Sustained combustion can be achieved through a stabilized detonation wave. Additionally, stabilizing a detonation wave will yield rapid combustion. This will allow for a shorter and lighter-weight engine system, resulting in less required combustor cooling. A stabilized detonation wave was numerically modeled for various inlet and geometric cases. The effect of fuel concentration, inlet Mach number, and geometric configuration on the stability of a detonation wave was quantified. Correlations were established between fuel concentration, inlet speed, geometric configuration and parameters characterizing the detonation wave. A linear relationship was quantified between the fuel concentration and the parameters characterizing the detonation wave.
机译:在过去的十五年中,可行的超燃冲压发动机的发展已迅速实现了以下长期目标:响应性的亚轨道空间进入;远程,迅速的全球打击;和高速运输。尽管如此,仍有许多挑战需要解决。这些挑战包括高皮肤摩擦阻力和高传热率,这是持续高超声速飞行中车辆固有的。另一个挑战是维持燃烧。进行了数值模拟和建模,以提供减少蒙皮摩擦阻力和维持燃烧的见识。数值模拟用于研究边界层燃烧,这已证明可以减少蒙皮摩擦阻力。数值模拟的目的是量化燃料喷射参数对边界层燃烧以及最终对蒙皮摩擦系数和传热速率变化的影响。对结果的定性分析表明,皮肤摩擦系数的降低取决于多个参数以及参数之间可能的相互作用。持续燃烧可以通过稳定的起爆波来实现。另外,稳定起爆波将产生快速燃烧。这将使发动机系统更短,重量更轻,从而减少所需的燃烧室冷却。在各种进气道和几何情况下,对稳定的爆震波进行了数值建模。量化了燃料浓度,入口马赫数和几何构型对爆炸波稳定性的影响。在燃料浓度,进气速度,几何形状和表征爆轰波的参数之间建立了相关性。在燃料浓度和表征爆轰波的参数之间量化了线性关系。

著录项

  • 作者

    Clark, Ryan James.;

  • 作者单位

    Western Michigan University.;

  • 授予单位 Western Michigan University.;
  • 学科 Mechanical engineering.;Aerospace engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 232 p.
  • 总页数 232
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号