首页> 外文学位 >Microscale mechanical characterization of materials for extreme environments.
【24h】

Microscale mechanical characterization of materials for extreme environments.

机译:极端环境下材料的微观机械表征。

获取原文
获取原文并翻译 | 示例

摘要

Nanocrystalline metals are promising materials for applications that require outstanding strength and stability in extreme environments. Further improvements in the desirable mechanical properties of these materials require a better understanding of the relationship between their microstructure and grain boundary deformation behavior. Previous molecular dynamics simulations suggested that solute additions to grain boundaries can enhance the strength of nanocrystalline metals, but there has been a lack of experimental studies investigating this prediction. This dissertation presents mechanical and microstructural characterization of nanocrystalline Cu alloys and demonstrate that addition of Nb solutes to grain boundaries greatly enhances the strength of Cu. The measured hardness of Cu90Nb10 alloy is 5.6 GPa which is more than double the hardness of nanocrystalline pure Cu. Microstructural characterization through transmission electron microscopy and energy-dispersive X-ray spectroscopy on these alloys indicates a strong correlation between the grain boundary composition and the hardness. Variation of measured hardness with measured grain boundary composition is in very good agreement with previous molecular dynamics simulation predictions. The results of this work provide experimental evidence that grain boundary doping enhances the strength of nanocrystalline Cu far beyond that predicted by classical Hall-Petch strengthening and decreasing grain boundary energy through solute additions is the key to reaching theoretical strength in nanocrystalline metals.;Irradiation induced creep is a deformation mechanism that takes place under combined stress and particle bombardment. Effective characterization of this phenomenon on nanostructured materials is crucial for the assessment of their potential use in next generation nuclear power plants. Direct measurements of irradiation induced creep under MeV-heavy ion bombardment have not been feasible until recently due to the requirements of micron-sized specimens, muN-level force sensitivity, and nm-level displacement sensitivity. A recently developed mechanical characterization technique, micropillar compression, has enabled the testing of miniaturized specimens; however, there has been no demonstration of the application of this technique to irradiation induced creep measurements. This dissertation presents the development of an in situ measurement apparatus for compression testing of micron-sized cylindrical specimens under MeV-heavy ion bombardment. The apparatus has a force resolution of 1 muN and a displacement resolution of 1 nm. The apparatus measured irradiation induced creep in four different amorphous materials and the findings clarified the significance of different creep mechanisms in these materials. In amorphous metals and amorphous Si, the measured irradiation induced fluidity is ≈ 3 dpa-1GPa-1 (dpa: displacements per atom). The measured fluidity is in excellent agreement with previous molecular dynamics simulation predictions, providing experimental evidence for point defect mediated plastic flow under ion bombardment. For amorphous SiO2, stress relaxation through thermal spikes further contribute to the creep response, resulting in higher fluidities up to ≈ 83 dpa-1GPa -1.;Finally, this dissertation presents the further development of the creep testing apparatus for high temperature measurements. The apparatus demonstrated good thermal and mechanical stability and measured irradiation induced creep of nanocrystalline Cu at 200°C. Resulting irradiation induced fluidity is ≈ 10% of the fluidity of the amorphous metals, in agreement with previous measurements on free-standing films. Understanding the creep behavior of nanostructured metals under heavy ion bombardment at elevated temperatures is important for identifying the governing creep mechanisms in these materials. The developed apparatus provides a new and effective method of accelerated mechanical characterization of such promising materials for their potential use in future nuclear applications.
机译:纳米晶金属是有前途的材料,适用于在极端环境下要求出色的强度和稳定性的应用。这些材料的理想机械性能的进一步改善要求对它们的微观结构和晶界变形行为之间的关系有更好的了解。先前的分子动力学模拟表明,将溶质添加到晶界中可以增强纳米晶金属的强度,但是缺乏研究此预测的实验研究。本文介绍了纳米晶铜合金的力学和微观结构表征,并证明向晶界中添加Nb溶质极大地提高了Cu的强度。 Cu90Nb10合金的测量硬度为5.6 GPa,是纳米晶纯Cu硬度的两倍以上。通过透射电子显微镜和能量色散X射线光谱对这些合金的显微组织表征表明,晶界组成与硬度之间存在很强的相关性。测得的硬度随晶界组成的变化与先前的分子动力学模拟预测非常吻合。这项工作的结果提供了实验证据,表明晶界掺杂增强了纳米晶Cu的强度,远远超出了经典的Hall-Petch强化所预测的强度,并且通过溶质的添加降低晶界能是达到纳米晶金属理论强度的关键。蠕变是在应力和粒子轰击共同作用下发生的一种变形机制。在纳米结构材料上有效表征此现象对于评估其在下一代核电厂中的潜在用途至关重要。直到最近,由于微米级标本,muN级力敏感度和nm级位移敏感度的要求,在MeV重离子轰击下直接测量辐照引起的蠕变还不可行。最近开发的机械表征技术,微柱压缩,使得能够测试小型化的标本。然而,没有证明该技术在辐射诱导蠕变测量中的应用。本文提出了一种在MeV重离子轰击下用于压缩测试微米级圆柱体样品的原位测量装置的发展。该装置的力分辨率为1μN,位移分辨率为1 nm。该仪器在四种不同的非晶态材料中测量了辐射诱发的蠕变,并且发现澄清了这些材料中不同蠕变机理的重要性。在非晶态金属和非晶态Si中,测得的辐照诱导流动性为≈ 3 dpa-1GPa-1(dpa:每个原子的位移)。测得的流动性与先前的分子动力学模拟预测非常吻合,为离子轰击下点缺陷介导的塑性流动提供了实验证据。对于无定形SiO2,通过热尖峰引起的应力松弛进一步有助于蠕变响应,从而导致最高流动性达到≈。 83 dpa-1GPa -1 .;最后,本文提出了用于高温测量的蠕变测试设备的进一步发展。该设备表现出良好的热稳定性和机械稳定性,并且在200°C下测量了辐照诱导的纳米晶Cu蠕变。辐照导致的流动性为≈非晶态金属流动性的10%,与之前在独立式薄膜上的测量结果一致。了解纳米结构金属在重离子轰击下在高温下的蠕变行为,对于确定这些材料中的主要蠕变机理非常重要。所开发的设备提供了一种新的有效方法,可以加速对此类有前途的材料进行机械表征,以用于未来的核应用中。

著录项

  • 作者

    Ozerinc, Sezer.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Mechanical engineering.;Nanoscience.;Materials science.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 99 p.
  • 总页数 99
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号