首页> 外文学位 >Quantification en imagerie optique diffuse cerebrale: Analyse du signal et etude du probleme direct.
【24h】

Quantification en imagerie optique diffuse cerebrale: Analyse du signal et etude du probleme direct.

机译:弥散光学脑成像中的量化:信号分析和直接问题的研究。

获取原文
获取原文并翻译 | 示例

摘要

The aim of this PhD thesis lies in the development of multimodal data fusion methods to improve signal analysis and image quantification in diffuse optical imaging. The multimodal fusion involves two data types: functional data from diffuse optical imaging (DOI) and anatomical data from magnetic resonance imaging (MRI). In this context, high MRI spatial resolution is combined with high DOI temporal resolution to allow the temporal analysis of DOI signals and their localization within the brain.;The third part presents to the diffuse optical theory and the development of DOI signal analysis methods. We hypothesize that signal analysis can enable physiological signal source differentiations and improve cerebral activity detection. Since injected light crosses several head tissues before being detected, many informations (time and frequency) are brought on extra- and intracerebral physiology. Given this spectral structure, it can be advantageous to describe the signal in the time-frequency space by wavelets extensions . In this part, it is showed that physiology emerges naturally in the time-frequency plane and can be distinguished more readily than by a standard Fourier analysis. The ability of analytical wavelets to define an instantaneous phase in a concrete manner opens the door for a new measure: the phase-lock (synchrony) of the signal with itself. Moreover, analysis techniques developed in this work have allowed the characterization physiological noise and the estimation of the strength of hemodynamic response in diffuse optical imaging. Analysis performed on experimental DOI data provided us with a quantitative measure of the 1/f noise for hemoglobin concentration measures.;The multimodal data fusion of DOI functional and MRI anatomical data in the fourth part. Here, algorithms are developed to localize optical probes outside the MRI scanner. The integration of neuronavigation tools and a priori anatomical MRI data can improve the optical probes positioning. It is demonstrated that displaying optical sensitivity on MRI images can improve significantly the optical configuration positioning and hence the resulting imagery.;The fifth part exposes the new hybrid method for describing the photons propagation in a multilayered medium with the boundary element method (BEM). The method is formulated using the Born approximation applied to the diffusion equation which is defined by an absorption perturbation. This is relevant with cerebral DOI since detected absorption changes reflect hemoglobin changes involving in the hemodynamic response function. The integral formulation of the forward model with this method enables the image quantification. This model necessitates elaboration of segmentation tools of cerebral tissues from a priori MRI anatomical data. Indeed, these MRI segmentations enable to define distinct optical properties for each tissue. The algorithms are written to follow the hybrid approach: they can accomplish boundary segmentations for the need of the BEM and also volumetric segmentations necessary for the perturbation definition. Results are validated with Monte Carlo simulations. These methods describe the radiative transport equation and are computationally intensive. Results suggest that 3D multilayered medium diffuse optical tomography can be performed using the perturbative BEM approach with a reduced computational cost. However, this method cannot be applied in medium with low- or non-scattering regions and close (∼ 2 mm) to the source since the diffusion equation is not valid. This is the case in diffuse optical imaging when considering the cerebral spinal fluid (CSF) as a sub-region. In addition, in the context of 3D cerebral imaging, BEM enables to build accurate surface tissue meshes. This is not true with volumetric meshes built with FEM since modeling precisely the cerebral convolutions on the surface of the brain could be particulary arduous. Finally, the new hybrid method is less computationally expensive than Monte Carlo simulations.;The first part of the thesis introduces the work by presenting hypothesis, objectives, methods, conclusions and original scientific contributions. The thesis orientation is also included to help the reader to navigate through the thesis. Second part exposes complex biological mechanisms involving in the hemodynarnical response function.;Some research directions are left unanswered. Briefly, it could be interesting to investigate on new spectral methods to analyse physiological signals. Indeed, the understanding of physiology behaviors undoubtedly leads to improvements of hemoglobin concentrations estimation. In the case of the forward model definition, the addition of diffusion MRI could help in modeling the anisotropic photon propagation within the fibers of the white matter. (Abstract shortened by UMI.)
机译:本博士学位论文的目的在于开发多模态数据融合方法,以改善漫射光学成像中的信号分析和图像量化。多峰融合涉及两种数据类型:来自漫射光学成像(DOI)的功能数据和来自磁共振成像(MRI)的解剖数据。在这种情况下,高MRI空间分辨率与高DOI时间分辨率相结合,可以对DOI信号及其在大脑中的位置进行时间分析。第三部分介绍了漫射光学理论和DOI信号分析方法的发展。我们假设信号分析可以使生理信号源分化并改善大脑活动检测。由于注入的光在被检测到之前会穿过多个头部组织,因此许多信息(时间和频率)被带到了脑外和脑内生理。给定这种频谱结构,通过小波扩展描述时频空间中的信号可能是有利的。在这一部分中,表明生理学在时频平面中自然出现,并且比标准傅里叶分析更容易区分。分析小波以具体方式定义瞬时相位的能力为新措施打开了大门:信号与自身的锁相(同步)。此外,这项工作中开发的分析技术已经可以表征生理噪声,并可以估计漫射光学成像中的血液动力学反应强度。对实验性DOI数据进行的分析为血红蛋白浓度测量提供了1 / f噪声的定量方法。第四部分DOI功能和MRI解剖数据的多峰数据融合。在这里,开发了将光学探头定位在MRI扫描仪外部的算法。神经导航工具和先验解剖MRI数据的集成可以改善光学探头的定位。结果表明,在MRI图像上显示光敏性可以显着改善光学结构的定位,从而改善所得的图像。第五部分介绍了用边界元法(BEM)描述多层介质中光子传播的新混合方法。该方法是使用适用于由吸收扰动定义的扩散方程式的Born近似公式来制定的。这与脑DOI有关,因为检测到的吸收变化反映了涉及血流动力学响应功能的血红蛋白变化。用这种方法对正向模型的积分公式使图像量化成为可能。该模型需要根据先验MRI解剖学数据详细阐述脑组织的分割工具。实际上,这些MRI分割能够为每个组织定义不同的光学特性。这些算法的编写遵循混合方法:它们可以根据BEM的需要完成边界分割,还可以完成扰动定义所需的体积分割。结果通过蒙特卡洛模拟验证。这些方法描述了辐射输运方程,并且计算量大。结果表明,可以使用微扰BEM方法以降低的计算成本执行3D多层介质漫射光学层析成像。但是,由于扩散方程无效,因此该方法不能应用于具有低散射区域或无散射区域并且靠近源的介质(约2 mm)。当将脑脊髓液(CSF)作为子区域时,在漫射光学成像中就是这种情况。此外,在3D脑成像中,BEM可以建立准确的表面组织网格。对于使用FEM构建的体积网格来说,情况并非如此,因为精确地建模大脑表面上的大脑卷积可能特别困难。最后,新的混合方法比蒙特卡洛模拟的计算成本更低。论文的第一部分通过介绍假设,目标,方法,结论和原始科学贡献来介绍这项工作。还包括论文方向,以帮助读者浏览论文。第二部分揭露了涉及血液动力学反应功能的复杂生物学机制。简而言之,研究新的频谱方法以分析生理信号可能会很有趣。确实,对生理行为的理解无疑导致了血红蛋白浓度估计的改善。在正向模型定义的情况下,扩散MRI的添加可以帮助建模各向异性光子在白质纤维内的传播。 (摘要由UMI缩短。)

著录项

  • 作者

    Dehaes, Mathieu.;

  • 作者单位

    Ecole Polytechnique, Montreal (Canada).;

  • 授予单位 Ecole Polytechnique, Montreal (Canada).;
  • 学科 Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 376 p.
  • 总页数 376
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号