首页> 外文学位 >Singular value decomposition based information retrieval from phasor measurement unit data.
【24h】

Singular value decomposition based information retrieval from phasor measurement unit data.

机译:从相量测量单位数据中检索基于奇异值分解的信息。

获取原文
获取原文并翻译 | 示例

摘要

Electric power systems can display a range of undesirable dynamic phenomena by which acceptable, stable operation may be lost; among these is the "voltage instability" phenomenon. The vulnerability of an electric power system to such phenomenon is typically monitored at intervals of approximately five minutes by state estimators, which are based on a network model to compute the system operating point. The dependence on accurate network parameters and topology, and infrequent monitoring may be regarded as shortcomings in present utility practice. Motivated by this fact, this thesis will propose a conditioning monitor based solely on phasor measurement unit (PMU) data, without the need for network parameters or topology to construct the power flow model and hence suitable for near-real-time implementation.;In a very large electric power system, with very large numbers of measurements over a wide geographic area, computational cost may undermine the goal of near-real time computation. Decomposing a large power system into small partitions is considered, to allow the proposed method to provide dependable results in near-real time. This thesis develops a technique for power system decomposition that blends balanced methods with system coherency. Coherency based power system partitioning with consideration of balanced number of buses in parts may result in improved voltage stability assessment and topology change detection of the proposed method with reduced computation time.;Actual PMU data may be corrupted or missing, which may cause false alarms to operators. PMU data presents low dimensional behavior, which implies that the PMU data array can be estimated as a sum of small number of rank-1 matrices. Exploiting the low dimensional behavior in PMU data, the arriving PMU data can be checked for its consistency with prior observations. The bad/missing data estimation and correction relies on the premise that aggregate power system loads can be decomposed into a slowly varying, deterministic process and faster time scale stochastic process.;This thesis seeks to provide another approach for increasing situational awareness of electric power system by use of a very high resolution data from PMUs, thus exploiting their growing deployment in North America and around the world.
机译:电力系统会表现出一系列不良的动态现象,从而可能会失去可接受的稳定运行。其中有“电压不稳定”现象。电力系统对这种现象的脆弱性通常由状态估计器以大约五分钟的间隔监视,状态估计器基于网络模型来计算系统工作点。依赖于准确的网络参数和拓扑以及不频繁的监视可能被视为当前公用事业实践中的缺点。基于这一事实,本文将提出一种仅基于相量测量单元(PMU)数据的状态监测器,而无需网络参数或拓扑结构来构建潮流模型,因此适合于近实时实施。对于一个非常大的电力系统,在广阔的地理区域内进行大量测量,计算成本可能会破坏近实时计算的目标。考虑将大型电力系统分解为较小的分区,以使所提出的方法能够近实时地提供可靠的结果。本文提出了一种电力系统分解技术,将平衡方法与系统一致性融为一体。考虑零件中平衡的母线数量的基于相干性的电力系统分区可能会改善所提出方法的电压稳定性评估和拓扑变化检测,并缩短计算时间。;实际PMU数据可能会损坏或丢失,从而可能导致错误警报操作员。 PMU数据呈现低维行为,这意味着可以将PMU数据数组估计为少量的1级矩阵之和。利用PMU数据中的低维行为,可以检查到达的PMU数据是否与先前的观测结果一致。不良/缺失数据的估计和校正依赖于这样的前提:总电力系统负载可以分解为缓慢变化的确定性过程和更快的时间尺度随机过程。;本论文旨在为提高电力系统的态势感知提供另一种方法通过使用来自PMU的非常高分辨率的数据,从而利用它们在北美和世界各地日益增长的部署。

著录项

  • 作者

    Lim, Jong Min.;

  • 作者单位

    The University of Wisconsin - Madison.;

  • 授予单位 The University of Wisconsin - Madison.;
  • 学科 Electrical engineering.;Computer engineering.;Energy.;Alternative Energy.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 186 p.
  • 总页数 186
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号