首页> 外文学位 >On computational synthesis and dynamic analysis of nonlinear resonant systems with internal resonances.
【24h】

On computational synthesis and dynamic analysis of nonlinear resonant systems with internal resonances.

机译:关于具有内部共振的非线性共振系统的计算综合和动力学分析。

获取原文
获取原文并翻译 | 示例

摘要

This work is concerned with synthesis methods for nonlinear structures and the investigation of their dynamic response. Nonlinear resonant structures are capable of displaying a wide range of phenomena including but not limited to internal resonances. However, there are not many systematic synthesis methods for their design which often leads to a very constrained design space. This shortage of options may often lead to a sub-optimal design being selected for a particular application. Topology optimization is a blanket term used for a variety of computational synthesis methods which have been used for the design of various types of structures such as compliant mechanisms. This thesis describes new topology optimization methods developed for the design of nonlinear structures, specifically for structures satisfying given internal resonances. The objective of the research proposed here is to unify the two disparate fields of topology optimization and nonlinear dynamics, thus providing nonlinear dynamics with a sorely missing design tool and at the same time extending the application space of topology optimization into an entirely new domain. This convergence would pave the way for the design of optimal, sensitive and robust Micro Electro-Mechanical Systems (MEMS) as well as meso-scale resonators and meta-materials which could see wide applications in diverse fields such as frequency dividers and filters in electronic circuits and as mass and chemical sensors for defense and industrial applications. This research could also lead to the development of insight and tools which can be used to produce a new generation of designs and lead to a wider appreciation of the myriad ways in which nonlinearities can be "designed into" devices for increased effectiveness and efficiency.
机译:这项工作涉及非线性结构的合成方法及其动态响应的研究。非线性谐振结构能够显示广泛的现象,包括但不限于内部谐振。但是,用于它们的设计的系统综合方法很少,通常会导致非常有限的设计空间。选项的缺乏通常可能导致为特定应用选择次优设计。拓扑优化是一个笼统的术语,用于各种计算综合方法,这些方法已用于设计各种类型的结构(例如顺应性机制)。本文介绍了为非线性结构设计开发的新拓扑优化方法,特别是对于满足给定内部共振的结构。此处提出的研究的目的是统一拓扑优化和非线性动力学这两个不同的领域,从而为非线性动力学提供一个极为缺失的设计工具,同时将拓扑优化的应用空间扩展到一个全新的领域。这种融合将为设计最佳,灵敏且坚固的微机电系统(MEMS)以及中尺度谐振器和超常材料铺平道路,这些谐振器和超常材料可能会在各个领域得到广泛应用,例如电子分频器和滤波器电路以及用作国防和工业应用的质量和化学传感器。这项研究也可能导致洞察力和工具的发展,这些见解和工具可用于生成新一代设计,并导致人们广泛理解可以将非线性“设计”到设备中以提高有效性和效率的多种方法。

著录项

  • 作者

    Tripathi, Astitva.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Mechanical engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 181 p.
  • 总页数 181
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号