首页> 外文学位 >Ultrafast electron-phonon coupling at the metal-dielectric interface.
【24h】

Ultrafast electron-phonon coupling at the metal-dielectric interface.

机译:金属-电介质界面处的超快电子-声子耦合。

获取原文
获取原文并翻译 | 示例

摘要

The pump-probe technique is an ultrafast spectroscopy method of detecting the dynamics of energy carriers such as electrons, phonons, and holes with transient thermal reflectance measurement. A laser beam is divided into a pump beam and probe beam with different wavelength or polarization and time delay. According to the transient reflectance result, this method could be applied to investigate the interaction between electron-phonon and electron-electron coupling with a high temporal resolution on the order of 10 femtoseconds.;Energy transfer of photo-excited electrons in a metal film to the dielectric substrate at the metal-dielectric interface is important for understanding the ultrafast heat transfer process across the two materials. Many researches have been conducted in finding this energy transfer process in different materials. In this thesis, by measuring the transient reflectance variation, the two-temperature model (TTM) is used to analyze the interface metal electron and dielectric substrate coupling. In order to relate temperature to the reflectance change, a temperature and wavelength dependent Drude-Lorentz model was developed which represents the temperature dependent dielectric constant and can be used to calculate reflectance variation. Ultrafast pump-and-probe interband transition measurements on Au-Si samples were carried out, where the probe photon energy was chosen to be close to the interband transition threshold (ITT) of gold to minimize the influence of non-equilibrium or non-thermalized electrons on the optical response, and to increase the signal to noise ratio for reflectance change.;In the experiment, different pump fluences have been used to test the transient reflectance variation on Au-Si samples of different thicknesses. The pump wavelength is taken as 800 nm while the probe wavelength is taken as 490 nm. A thick gold of 1000 nm thickness has been used to determine the electron-phonon coupling strength represented by a constant G 0, and thinner films have been tested by fitting the transient reflectance change with this G0 and the electron-phonon thermal resistance across interface. Interface thermal conductance (inverse of thermal resistance) at different pump laser fluences was obtained, and was found to increase with the interface electron and phonon temperature.;For future work, with the model and measurement method implemented in this thesis, more gold film samples with more types of substrate, such as Au-Glass, Au-Quartz, can be tested to see the difference when the non-equilibrium electrons factor has been reduced. Also, more proper probe wavelengths which maximize the signal-noise ratio for different materials can be concluded from the Drude-Lorentz model. The contribution of non-thermalized electron compared with thermalized electron at different wavelength for other samples shall be investigated in the future.
机译:泵浦探针技术是一种超快速光谱法,可通过瞬态热反射率测量来检测电子,声子和空穴等能量载体的动力学。激光束分为具有不同波长或偏振和时间延迟的泵浦光束和探测光束。根据瞬态反射率的结果,该方法可用于研究电子声子与电子-电子之间的相互作用,时间分辨力约为10飞秒。金属-电介质界面处的电介质基板对于理解两种材料之间的超快传热过程非常重要。在寻找不同材料中的这种能量转移过程方面已经进行了许多研究。本文通过测量瞬态反射率变化,采用双温度模型(TTM)来分析界面金属电子与介电基片的耦合。为了使温度与反射率变化相关,建立了温度和波长相关的Drude-Lorentz模型,该模型表示温度相关的介电常数,可用于计算反射率变化。在Au-Si样品上进行了超快的泵浦和探针带间跃迁测量,选择的探针光子能量接近金的带间跃迁阈值(ITT),以最大程度地减少非平衡或非热化的影响电子对光学响应产生影响,并增加信噪比以改变反射率。在实验中,已使用不同的泵浦注量来测试不同厚度的Au-Si样品的瞬态反射率变化。泵浦波长取为800 nm,而探针波长取为490 nm。已经使用厚度为1000 nm的厚金来确定由常数G 0表示的电子-声子耦合强度,并且通过将瞬态反射率变化与此G0和跨界面的电子-声子热阻进行拟合来测试更薄的膜。获得了不同泵浦激光注量下的界面热导率(热阻的倒数),并发现该热导率随界面电子和声子温度的升高而增加。;为进一步开展工作,采用本文实现的模型和测量方法,可得到更多的金膜样品。可以测试带有更多类型衬底的材料,例如金玻璃,金石英,以查看当非平衡电子因子减小时的差异。同样,可以从Drude-Lorentz模型中得出使不同材料的信噪比最大的更合适的探针波长。将来应研究非热电子与不同波长的热电子相比对其他样品的贡献。

著录项

  • 作者

    Yao, Qiaomu.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Mechanical engineering.;Nanoscience.;Optics.
  • 学位 M.S.M.E.
  • 年度 2015
  • 页码 54 p.
  • 总页数 54
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号